Association between functional impairments at hospital discharge and short-term barriers to cardiac rehabilitation in acute coronary syndrome: a longitudinal study
Associação entre déficits funcionais na alta hospitalar e barreiras de curto prazo à reabilitação cardíaca na síndrome coronariana aguda: um estudo longitudinal
Gabriel Parisotto, Maurício Sant’Anna Junior, Jannis Papathanasiou, Luis Felipe da Fonseca Reis, Arthur de Sá Ferreira
Abstract
Background: The functional status of acute coronary syndrome (ACS) patients at hospital discharge and its impact on participation in cardiac rehabilitation (CR) programs remains unclear. Aim: This study investigates barriers to and adherence in CR programs 30 days post-discharge for ACS exacerbation and explores the predictive value of functional characteristics for these barriers. Methods: Upon hospital discharge, participants underwent functional tests, including assessments of respiratory muscle strength (maximal inspiratory and expiratory pressures [MIP and MEP]), handgrip strength (HGS), and the 6-minute walk distance (6MWD). Thirty days post-discharge, participants were evaluated using the Cardiac Rehabilitation Barrier Scale (CRBS). Results: 130 participants (64.6% men, mean age 65 ± 12 years, median length of stay before discharge 17 [8; 41] days) were included. The major barrier to participation and adherence in CR programs was comorbidities/functional status (13.1 ± 4.3 points). After adjustment for age, sex, and length of stay, the CRBS comorbidities/ functional score was negatively associated with MIP (β= -0.123, 95% CI -0.215 to -0.031), while the CRBS perceived needs/healthcare factors score was positively associated with MIP (β= 0.073, 95% CI 0.009 to 0.137). Conclusion: Barriers to participation and adherence in CR programs among ACS adults 30 days post-hospital discharge are mainly explained by respiratory muscle function. These findings underscore the importance of early post-discharge strategies targeting patients with lower functional status to reduce barriers to CR participation.
Keywords
Resumo
Introdução: O estado funcional dos pacientes com síndrome coronariana aguda (SCA) na alta hospitalar e seu impacto na participação em programas de reabilitação cardíaca (RC) permanece desconhecidos. Objetivo: Investigar barreiras e adesão em programas de RC 30 dias pós-alta por exacerbação de SCA e explorar o valor preditivo das características funcionais para essas barreiras. Métodos: Na alta hospitalar, os participantes foram submetidos a testes de capacidade funcional, força muscular respiratória (pressões inspiratórias e expiratórias máximas [PImáx e PEmáx]), força de preensão manual (FPM) e distância percorrida no teste de caminhada de 6 minutos (DTC6). Trinta dias após a alta, os participantes foram avaliados por meio da Escala de Barreira de Reabilitação Cardíaca (CRBS). Resultados: Foram incluídos 130 participantes (64,6% homens, idade média 65 ± 12 anos, tempo mediano de internamento antes da alta 17 [8; 41] dias). A principal barreira foi comorbidades/estado funcional (13,1 ± 4,3 pontos). Após ajuste para idade, sexo e tempo de internação, o escore de comorbidades/funcional do CRBS foi negativamente associado à PImáx (β= -0,123, IC 95% -0,215 a -0,031), enquanto o escore de necessidades percebidas/fatores de saúde do CRBS foi positivamente associado com PImáx (β= 0,073, IC 95% 0,009 a 0,137). Conclusão: As barreiras à participação e adesão em programas de RC entre adultos com SCA 30 dias pós-alta hospitalar são explicadas principalmente pela função muscular respiratória. Esses achados ressaltam a importância de estratégias precoces pós-alta direcionadas a pacientes com status funcional mais baixo para reduzir barreiras à participação na RC.
DOI da versão traduzida: https://doi.org/10.47066/2966-4837.2024.0008pt
Palavras-chave
Referências
1. Stoney CM, Kaufmann PG, Czajkowski SM. Cardiovascular disease: psychological, social, and behavioral influences: Introduction to the special issue. Am Psychol. 2018;73(8):949- 54. http://doi.org/10.1037/amp0000359. PMid:30394774.
2. Belitardo JN, Ayoub AC. Identification of readmission predictors in elderly patients with acute coronary syndrome. Int J Cardiovasc Sci. 2015;28(2):139-47. http:// doi.org/10.5935/2359-4802.20150016.
3. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012 Jul;33(14):1787-847. http:// doi.org/10.1093/eurheartj/ehs104.
4. Montemezzo D, Fregonezi A, Pereira DA, Britto R, Reid WD. Influence of inspiratory muscle weakness on inspiratory muscle training responses in chronic heart failure patients: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2014;95(7):1398-407. http://doi.org/10.1016/j. apmr.2014.02.022. PMid:24631801.
5. Dharmarajan K, Hsieh AF, Lin Z, Bueno H, Ross JS, Horwitz LI, et al. Diagnoses and timing of 30-day readmissions after hospitalization for heart failure, acute myocardial infarction, or pneumonia. JAMA. 2013 Jan 23;309(4):355-63. http://doi.org/10.1001/jama.2012.216476. PMid:23340637.
6. Davies EJ, Moxham T, Rees K, Singh S, Coats AJ, Ebrahim S, et al. Exercise based rehabilitation for heart failure. Cochrane Database Syst Rev. 2010;(4):CD003331. http:// doi.org/10.1002/14651858.CD003331.pub3.
7. Heran BS, Chen JM, Ebrahim S, Moxham T, Oldridge N, Rees K, et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2011;(7):CD001800. http://doi.org/10.1002/14651858. CD001800.pub2.
8. Brown JP, Clark AM, Dalal H, Welch K, Taylor RS. Patient education in the management of coronary heart disease. Cochrane Database Syst Rev. 2011 Dec 7;(12):CD008895. http://doi.org/10.1002/14651858.CD008895.pub2.
9. Karmali KN, Davies P, Taylor F, Beswick A, Martin N, Ebrahim S. Promoting patient uptake and adherence in cardiac rehabilitation. Cochrane Database Syst Rev. 2014;2014(6):CD007131. http://doi.org/10.1002/14651858. CD007131.pub3. PMid:24963623.
10. Richards SH, Anderson L, Jenkinson CE, Whalley B, Rees K, Davies P, et al. Psychological interventions for coronary heart disease. Cochrane Database Syst Rev. 2017;2017(4):CD002902. PMid:28452408.
11. Taylor RS, Dalal H, Jolly K, Moxham T, Zawada A. Home-based versus centre-based cardiac rehabilitation. Cochrane Database Syst Rev. 2010;(1):1-64. PMid:20091618.
12. Anderson L, Taylor RS. Cardiac rehabilitation for people with heart disease: an overview of Cochrane systematic reviews. Cochrane Database Syst Rev. 2014;2014(8):CD011273. PMid:25503364.
13. Borghi-Silva A, Mendes RG, Trimer R, Cipriano G Jr. Current trends in reducing cardiovascular disease risk factors from around the world: focus on cardiac rehabilitation in Brazil. Prog Cardiovasc Dis. 2014;56(5):536-42. http://doi. org/10.1016/j.pcad.2013.09.008. PMid:24607019.
14. Benseñor IM, Lotufo PA. Secondary prevention of cardiovascular disease in Brazil: lessons from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Sao Paulo Med J. 2019;137(6):477-8. http://doi.org/10.1590/1516- 3180.2019.1376091219. PMid:32159631.
15. Vandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE). Epidemiology. 2007;18(6):805-35. http://doi.org/10.1097/ EDE.0b013e3181577511. PMid:18049195.
16. Granger CB, Goldberg RJ, Dabbous O, Pieper KS, Eagle KA, Cannon CP, et al. Predictors of hospital mortality in the global registry of acute coronary events. Arch Intern Med. 2003;163(19):2345-53. http://doi.org/10.1001/ archinte.163.19.2345. PMid:14581255.
17. Lopes CS, Faerstein E, Chor D. Stressful life events and common mental disorders: results of the Pro-Saude Study. Cad Saúde Pública. 2003;19(6):1713-20. http://doi. org/10.1590/s0102-311x2003000600015.
18. Nance R, Delaney J, McEvoy JW, Blaha MJ, Burke GL, Navas- Acien A, et al. Smoking intensity (pack/day) is a better measure than pack-years or smoking status for modeling cardiovascular disease outcomes. J Clin Epidemiol. 2017;81:111-9. http://doi.org/10.1016/j.jclinepi.2016.09.010. PMid:27769836.
19. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-Country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381-95. http://doi.org/10.1249/01. MSS.0000078924.61453.FB. PMid:12900694.
20. Fess EE. Grip strength. In: Casanova JS, editor. Clinical assessment recommendations. 2nd ed. Chicago: American Society of Hand Therapists; 1992. p. 41-5.
21. Reijnierse EM, de Jong N, Trappenburg MC, Blauw GJ, Butler-Browne G, Gapeyeva H, et al. Assessment of maximal handgrip strength: how many attempts are needed? J Cachexia Sarcopenia Muscle. 2017;8(3):466-74. http://doi. org/10.1002/jcsm.12181. PMid:28150387.
22. Neves RS, Lopes AJ, de Menezes SLS, Lima TRL, Ferreira AS, Guimarães FS. Hand grip strength in healthy young and older Brazilian adults: development of a linear prediction model using simple anthropometric variables. Kinesiology. 2017;49(2):208-16. http://doi.org/10.26582/k.49.2.5.
23. American Thoracic Society. European Respiratory Society. ATS/ERS Statement on Respiratory Muscle Testing. Am J Respir Crit Care Med. 2002;166(4):518-624. http://doi. org/10.1164/rccm.166.4.518. PMid:12186831.
24. Neder JA, Andreoni S, Lerario MC, Nery LE. Reference values for lung function tests: II. Maximal respiratory pressures and voluntary ventilation. Braz J Med Biol Res. 1999;32(6):719- 27. http://doi.org/10.1590/S0100-879X1999000600007. PMid:10412550.
25. Almeida VP, Ferreira AS, Guimarães FS, Papathanasiou J, Lopes AJ. Predictive models for the six-minute walk test considering the walking course and physical activity level. Eur J Phys Rehabil Med. 2020;55(6):824-33. http://doi. org/10.23736/S1973-9087.19.05687-9. PMid:31189305.
26. American Thoracic Society. ATS Statement: Guidelines for the Six-Minute Walk Test. Am J Respir Crit Care Med. 2002;166:111-7. http://doi.org/10.1164/ajrccm.166.1.at1102.
27. Zou H, Zhu X, Zhang J, Wang Y, Wu X, Liu F, et al. Reference equations for the six-minute walk distance in the healthy Chinese population aged 18–59 years. PLoS One. 2017;12(9):e0184669. http://doi.org/10.1371/journal. pone.0184669. PMid:28910353.
28. Borg G. Borg’s perceived exertion and pan scales. Champaign, IL: Human Kinetics; 1998.
29. Ghisi GL M, Santos RZ, Schveitzer V, Barros AL, Recchia TL, Oh P, et al. Desenvolvimento e validação da versão em português da Escala de Barreiras para Reabilitação Cardíaca. Arq Bras Cardiol. 2012;98(4):344-52. http://doi.org/10.1590/ S0066-782X2012005000025. PMid:22426990.
30. Greenland S. Response and follow-up bias in Cohort studies. Am J Epidemiol. 2017;185(11):1044-7. http://doi. org/10.1093/aje/kwx106. PMid:30052737.
31. Brunori EHFR, Lopes CT, Cavalcante AMRZ, Santos VB, Lopes JL, Barros ALBL. Association of cardiovascular risk factors with the different presentations of acute coronary syndrome. Rev Lat Am Enfermagem. 2014;22(4):538-46. http://doi. org/10.1590/0104-1169.3389.2449. PMid:25296136.
32. Čeponienė I, Žaliaduonytė-Pekšienė D, Gustienė O, Tamošiūnas A, Žaliūnas R. Association of major cardiovascular risk factors with the development of acute coronary syndrome in Lithuania. Eur Heart J Suppl. 2014;16(Suppl A):A80-3. http://doi.org/10.1093/eurheartj/ sut017. PMid:29867292.
33. Cortés O, Arthur HM. Determinants of referral to cardiac rehabilitation programs in patients with coronary artery disease: a systematic review. Am Heart J. 2006;151(2):249-56. http://doi.org/10.1016/j.ahj.2005.03.034. PMid:16442885.
34. Grace SL, McDonald J, Fishman D, Caruso V. Patient preferences for home-based versus hospital-based cardiac rehabilitation. J Cardiopulm Rehabil. 2005;25(1):24-9. http://doi.org/10.1097/00008483-200501000-00006. PMid:15714108.
35. Ruano-Ravina A, Pena-Gil C, Abu-Assi E, Raposeiras S, van ’t Hof A, Meindersma E, et al. Participation and adherence to cardiac rehabilitation programs. A systematic review. Int J Cardiol. 2016;223:436-43. http://doi.org/10.1016/j. ijcard.2016.08.120. PMid:27557484.
36. Abreu A, Pesah E, Supervia M, Turk-Adawi K, Bjarnason- Wehrens B, Lopez-Jimenez F, et al. Cardiac rehabilitation availability and delivery in Europe: how does it differ by region and compare with other high-income countries?: Endorsed by the European Association of Preventive Cardiology. Eur J Prev Cardiol. 2019;26(11):1131-46. http:// doi.org/10.1177/2047487319827453. PMid:30782007.
37. Kim C. Overview of cardiac rehabilitation. J Korean Med Assoc. 2016;59(12):938-46. http://doi.org/10.5124/ jkma.2016.59.12.938.
38. Kong V, Somakhamixay O, Cho WS, Kang G, Won H, Rah HC, et al. Recurrence risk prediction of acute coronary syndrome per patient as a personalized ACS recurrence risk: a retrospective study. PeerJ. 2022;10:e14348. http:// doi.org/10.7717/peerj.14348. PMid:36405028.
39. Mroszczyk-McDonald A, Savage PD, Ades PA. Handgrip strength in cardiac rehabilitation. J Cardiopulm Rehabil Prev. 2007;27(5):298-302. http://doi.org/10.1097/01. HCR.0000291297.70517.9a. PMid:17885508.
40. Wong E, Selig S, Hare DL. Respiratory muscle dysfunction and training in chronic heart failure. Heart Lung Circ. 2011;20(5):289-94. http://doi.org/10.1016/j.hlc.2011.01.009. PMid:21435947.
Submetido em:
16/10/2024
Aceito em:
02/01/2025