Impact of high-flow nasal cannula compared to Venturi mask on exercise tolerance in lung transplant candidates: a crossover randomized clinical trial
Impacto da cânula nasal de alto fluxo em comparação à máscara de venturi na tolerância ao exercício em candidatos a transplante de pulmão: um ensaio clínico randomizado cruzado
Emilia Maria Matos Rocha, Gezabell Rodrigues, Daniela Gardano Bucharles Mont’Alverne, Eanes Delgado Barros Pereira, Franciane Muniz Lucena Monteiro, Marcelo Alcantara Holanda, Suliana Mesquita Paula, Rafael Mesquita, Filadelfo Rodrigues Filho
Abstract
Background: Exercise is important for good health in lung transplant candidates and can be facilitated by oxygen supplementation. Aim: To compare the effects of the High-Flow Nasal Cannula (HFNC) and the Venturi mask (VM) on exercise tolerance in lung transplant candidates. Methods: This is a randomized crossover clinical trial carried out in the pulmonary rehabilitation program of a public hospital. Lung transplant candidates, over 18 years of age and needing oxygen during exercise were recruited. Two endurance tests on a treadmill were performed in random order with an interval of seven days, one with HFNC and the other with VM (both with FIO2 50%). The variables evaluated herein were endurance time (primary outcome), heart and respiratory rate, oxygen saturation, peripheral lactate, dyspnea, and lower limb fatigue symptoms. Results: Twelve participants were included (mean age 42 ± 10 years, 67% male). The time reached in the endurance test with the VM was 580 s (95% Confidence Interval, CI 403 – 756 s) and with the HFNC was 937 s (95% CI 668 – 1205 s); with mean difference of 357 s (95% CI 181 – 533 s) and P=0.001. No significant difference was observed after comparing the responses in other variables between the two conditions. There was no desaturation during any of the tests. Conclusion: The HFNC promoted an increase in exercise tolerance when compared to the VM in lung transplant candidates, and both systems were effective in preventing peripheral oxygen desaturation.
Keywords
Resumo
Introdução: O exercício é importante para uma boa saúde em candidatos a transplante de pulmão e pode ser facilitado pela suplementação de oxigênio. Objetivo: Comparar os efeitos da Cânula Nasal de Alto Fluxo (CNAF) e da Máscara de Venturi (MV) na tolerância ao exercício em candidatos a transplante de pulmão. Métodos: Este é um ensaio clínico randomizado cruzado realizado no programa de reabilitação pulmonar de um hospital público. Foram recrutados candidatos a transplante de pulmão, maiores de 18 anos e com necessidade de oxigênio durante o exercício. Dois testes de resistência em esteira foram realizados em ordem aleatória com intervalo de sete dias, um com a CNAF e outro com a MV (ambos com FIO2 50%). As variáveis avaliadas foram tempo de resistência (endurance) (desfecho primário), frequência cardíaca e respiratória, saturação de oxigênio, lactato periférico, dispneia e sintomas de fadiga de membros inferiores. Resultados: Doze participantes foram incluídos (idade média de 42 ± 10 anos, 67% do sexo masculino). O tempo alcançado no teste de resistência com a MV foi de 580 s (Intervalo de Confiança de 95%, IC 403 – 756 s) e com a CNAF foi de 937 s (IC 95% 668 – 1205 s); apresentando diferença média de 357 s (IC 95% 181 – 533 s) e P=0,001. Nenhuma diferença significativa foi observada após a comparação das respostas nas demais variáveis entre as duas condições. Não houve dessaturação durante nenhum dos testes. Conclusão: A CNAF promoveu um aumento na tolerância ao exercício quando comparada à MV em candidatos a transplante de pulmão, e ambos os sistemas foram eficazes na prevenção da dessaturação periférica de oxigênio.
DOI da versão traduzida: https://doi.org/10.47066/2966-4837.2024.0004pt
Palavras-chave
Referências
1. Langer D, Cebrià i Iranzo MA, Burtin C, Verleden SE, Vanaudenaerde BM, Troosters T, et al. Determinants of physical activity in daily life in candidates for lung transplantation. Respir Med. 2012;106(5):747-54. http://doi. org/10.1016/j.rmed.2012.01.003. PMid:22305265.
2. Briganti DF, D’Ovidio F. Long-term management of patients with end-stage lung diseases. Best Pract Res Clin Anaesthesiol. 2017;31(2):167-78. http://doi.org/10.1016/j. bpa.2017.07.007. PMid:29110790.
3. Booth K, Dark J. Lung transplantation: state of the art and current practice. Surgery. 2017;35(7):365-70.
4. Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, et al. An official American thoracic society/European respiratory society statement: Key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013;188(8):e13-64. http://doi.org/10.1164/rccm.201309- 1634ST. PMid:24127811.
5. Troosters T, Demeyer H, Hornikx M, Camillo CA, Janssens W. Pulmonary rehabilitation. Clin Chest Med. 2014;35(1):241-9. http://doi.org/10.1016/j.ccm.2013.10.006. PMid:24507849.
6. Puente-Maestu L, Palange P, Casaburi R, Laveneziana P, Maltais F, Neder JA, et al. Use of exercise testing in the evaluation of interventional efficacy: an official ERS statement. Eur Respir J. 2016;47(2):429-60. http://doi. org/10.1183/13993003.00745-2015. PMid:26797036.
7. Wickerson L, Rozenberg D, Janaudis-Ferreira T, Deliva R, Lo V, Beauchamp G, et al. Physical rehabilitation for lung transplant candidates and recipients: an evidence-informed clinical approach. World J Transplant. 2016;6(3):517-31. http://doi.org/10.5500/wjt.v6.i3.517. PMid:27683630.
8. van’t Hul A, Gosselink R, Kwakkel G. Constant-load cycle endurance performance: test-retest reliability and validity in patients with COPD. J Cardiopulm Rehabil. 2003;23(2):143- 50. http://doi.org/10.1097/00008483-200303000-00012. PMid:12668937.
9. Vogiatzis I, Zakynthinos G, Andrianopoulos V. Mechanisms of physical activity limitation in chronic lung diseases. Pulm Med. 2012;2012:634761. http://doi.org/10.1155/2012/634761. PMid:23365738.
10. Masclans JR, Pérez-Terán P, Roca O. Papel de la oxigenoterapia de alto flujo en la insuficiencia respiratoria aguda. Med Intensiva. 2015;39(8):505-15. http://doi.org/10.1016/j. medin.2015.05.009. PMid:26429697.
11. Nishimura M. High-flow nasal cannula oxygen therapy in adults. J Intensive Care. 2015;3(1):15. http://doi.org/10.1186/ s40560-015-0084-5. PMid:25866645.
12. Maggiore SM, Idone FA, Vaschetto R, Festa R, Cataldo A, Antonicelli F, et al. Nasal high-flow versus Venturi mask oxygen therapy after extubation: effects on oxygenation, comfort, and clinical outcome. Am J Respir Crit Care Med. 2014;190(3):282-8. http://doi.org/10.1164/rccm.201402- 0364OC. PMid:25003980.
13. Helviz Y, Einav S. A systematic review of the high-flow nasal cannula for adult patients. Crit Care. 2018;22(1):71. http:// doi.org/10.1186/s13054-018-1990-4. PMid:29558988.
14. Brasil. Registro Brasileiro de Ensaios Clínicos [Internet]. Brasília; 2024 [citado em 2024 Jun 26]. Disponível https:// ensaiosclinicos.gov.br/
15. Gosselink R, Troosters T, Decramer M. Exercise testing: why, which and how to interpret. Breathe. 2004;1(2):120-9. http:// doi.org/10.1183/18106838.0102.120.
16. Roca J, Whipp B, Agustı´ AGN, Anderson SD, Casaburi R, Cotes JE, et al. Clinical exercise testing with reference to lung diseases: indications, standardization and interpretation strategies. ERS Task Force on Standardization of Clinical Exercise Testing. European Respiratory Society. Eur Respir J. 1997 nov;10(11):2662-89. http://doi.org/10.1183/090319 36.97.10112662. PMid:9426113.
17. Borg G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand J Work Environ Health. 1990;16(Suppl 1):55-8. http://doi.org/10.5271/ sjweh.1815. PMid:2345867.
18. Woolner DF, Larkin J. An analysis of the performance of a variable venturi-type oxygen mask. Anaesth Intensive Care. 1980;8(1):44-51. h t t p : / / d o i . org/10.1177/0310057X8000800109. PMid:7386850.
19. Cirio S, Piran M, Vitacca M, Piaggi G, Ceriana P, Prazzoli M, et al. Effects of heated and humidified high flow gases during high-intensity constant-load exercise on severe COPD patients with ventilatory limitation. Respir Med. 2016;118:128-32. http://doi.org/10.1016/j. rmed.2016.08.004. PMid:27578482.
20. O’Donnell DE, Flüge T, Gerken F, Hamilton A, Webb K, Aguilaniu B, et al. Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD. Eur Respir J. 2004 jun;23(6):832-40. http://doi.org/10.1183/09031936.04.0011 6004. PMid:15218994.
21. Laviolette L, Bourbeau J, Bernard S, Lacasse Y, Pepin V, Breton MJ, et al. Assessing the impact of pulmonary rehabilitation on functional status in COPD. Thorax. 2008;63(2):115-21. PMid:17901158.
22. Casaburi R. Factors determining constant work rate exercise tolerance in COPD and their role in dictating the minimal clinically important difference in response to interventions. COPD. 2005;2(1):131-6. http://doi.org/10.1081/COPD- 200050576. PMid:17136973.
23. Cazzola M, MacNee W, Martinez FJ, Rabe KF, Franciosi LG, Barnes PJ, et al. Outcomes for COPD pharmacological trials: from lung function to biomarkers. Eur Respir J. 2008;31(2):416- 69. http://doi.org/10.1183/09031936.00099306. PMid:18238951.
24. Chatila W, Nugent T, Vance G, Gaughan J, Criner GJ. The effects of high-flow vs low-flow oxygen on exercise in advanced obstructive airways disease. Chest. 2004;126(4):1108-15. http://doi.org/10.1378/chest.126.4.1108. PMid:15486371.
25. Prieur G, Medrinal C, Combret Y, Dupuis Lozeron E, Bonnevie T, Gravier FE, et al. Nasal high flow does not improve exercise tolerance in COPD patients recovering from acute exacerbation: a randomized crossover study. Respirology. 2019;24(11):1088-94. http://doi.org/10.1111/resp.13664. PMid:31387158.
26. Mesquita R, Donária L, Genz ICH, Pitta F, Probst VS. Respiratory muscle strength during and after hospitalization for COPD exacerbation. Respir Care. 2013;58(12):2142-9. http://doi.org/10.4187/respcare.02393. PMid:23716708.
27. Dysart K, Miller TL, Wolfson MR, Shaffer TH. Research in high flow therapy: mechanisms of action. Respir Med. 2009;103(10):1400-5. http://doi.org/10.1016/j. rmed.2009.04.007. PMid:19467849.
28. Delorme M, Bouchard P-A, Simon M, Simard S, Lellouche F. Effects of high-flow nasal cannula on the work of breathing in patients recovering from acute respiratory failure. Crit Care Med. 2017;45(12):1981-8. http://doi.org/10.1097/ CCM.0000000000002693. PMid:28857852.
29. Biselli PJC, Kirkness JP, Grote L, Fricke K, Schwartz AR, Smith P, et al. Nasal high-flow therapy reduces work of breathing compared with oxygen during sleep in COPD and smoking controls: a prospective observational study.
Appl Physiol. 2017;122(1):82-8. http://doi.org/10.1152/ japplphysiol.00279.2016. PMid:27815367.
30. Parke RL, McGuinness SP. Pressures delivered by nasal high flow oxygen during all phases of the respiratory cycle. Respir Care. 2013;58(10):1621-4. http://doi.org/10.4187/ respcare.02358. PMid:23513246.
31. Lee AL, Button BM, Ellis S, Stirling R, Wilson JW, Holland AE, et al. Clinical determinants of the 6-Minute Walk Test in bronchiectasis. Respir Med. 2009;103(5):780-5. http://doi. org/10.1016/j.rmed.2008.11.005. PMid:19070473.
32. Edvardsen A, Jarosch I, Grongstad A, Wiegand L, Gloeckl R, Kenn K, et al. A randomized cross-over trial on the direct effects of oxygen supplementation therapy using different devices on cycle endurance in hypoxemic patients with Interstitial Lung Disease. PLoS One. 2018;13(12):e0209069. http://doi. org/10.1371/journal.pone.0209069. PMid:30592724.
33. Coelho EN, Graça CR, Kouyoumdjian JA. Lactato basal sanguíneo em indivíduos não diabéticos e diabéticos: mensuração por meio de tiras. Arq Ciênc Saúde. 2011;18(1):15-9.
34. Mathur S, Reid WD, Levy RD. Exercise limitation in recipients of lung transplants. Phys Ther. 2004 dez;84(12):1178-87. http://doi.org/10.1093/ptj/84.12.1178. PMid:15563258.
35. Engelen MP, Schols AM, Does JD, Gosker HR, Deutz NE, Wouters EF. Exercise-induced lactate increase in relation to muscle substrates in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;162(5):1697-704. http://doi.org/10.1164/ ajrccm.162.5.9910066. PMid:11069799.
36. Gloeckl R, Heinzelmann I, Matthaei M, Seeberg S, Damisch T, Jerrentrup A, et al. Benefits of an oxygen reservoir cannula versus a conventional nasal cannula during exercise in hypoxemic COPD patients: a crossover trial. Respiration. 2014;88(5):399-405. http://doi.org/10.1159/000368165. PMid:25323335.
Submetido em:
26/06/2024
Aceito em:
21/10/2024