O comportamento dos sinais vitais nos primeiros dias da hospitalização está associado aos desfechos clínicos em pacientes com COVID-19? Um estudo retrospectivo
Is the behavior of vital signs in the first days of hospitalization associated with clinical outcomes in patients with COVID-19? A retrospective study
Viviane Castello-Simões, Mariana Brasil da Cunha Martino Pereira, Adriano Petrolini Mateus, Naiara Tais Leonardi, Cássia da Luz Goulart, Débora Mayumi de Oliveira Kawakami, Nayara Cristina Romão Cruz, Nikolly Struziatto Duarte, Audrey Borghi-Silva, Renata Gonçalves Mendes
Resumo
Introdução: A trajetória dos sinais vitais, principalmente no início da hospitalização, pode resultar em respostas sobre desfechos clínicos. Objetivo: Avaliar o comportamento dos sinais vitais/variáveis derivadas e da variabilidade da pressão arterial (VPA) durante a fase precoce de hospitalização por COVID-19 e sua associação com desfechos clínicos, além de identificar o ponto de corte dos sinais vitais/variáveis derivadas para prever desfechos clínicos. Métodos: Análise retrospectiva de 100 pacientes hospitalizados por COVID-19, alocados em: grupo desfechos negativos (GD-; n=56) e grupo desfecho positivo (GD+; n=44). Sinais vitais [frequência cardíaca (FC), pressão arterial sistólica (PAS), diastólica e média (PAM), temperatura, frequência respiratória (FR) e saturação periférica de oxigênio]/variáveis derivadas [pressão de pulso (PP) e duplo produto (DP)] e VPA foram avaliadas nos primeiros cinco dias de hospitalização. Curvas ROC foram utilizadas para identificar pontos de corte na predição dos desfechos clínicos. Resultados: Comparado ao 1.º dia de internação, o GD+ apresentou redução na PP no 3.º e 5.º dias, FR a partir do 3.º dia, DP a partir do 4.º dia e PAS no 5.º dia (p<0,05). Adicionalmente, o GD+ apresentou menor PP no 2.º e 4.º dias, menor FR no 4.º dia e menor VPA (PAS e PAM) em relação ao GD- (p<0,05). A curva ROC foi capaz de predizer desfechos negativos quando PP ≥ 40 mmHg no 5.º dia de internação (AUC: 0,63; p=0,02). Conclusão: Pacientes com desfecho clínico positivo apresentaram melhor comportamento dos sinais vitais/variáveis derivadas e da VPA na fase precoce de hospitalização. Adicionalmente, PP ≥ 40 mmHg no 5º dia de hospitalização foi considerada como ponto de corte para prever desfechos negativos.
Palavras-chave
Abstract
Background: The trajectory of vital signs, especially at the beginning of hospitalization, can result in answers about clinical outcomes. Aim: To evaluate the behavior of vital signs/derived variables and blood pressure variability (BPV) during the early phase of hospitalization for COVID-19 and its association with clinical outcomes, in addition to identify the cut-off point for these vital signs/derived variables to predict clinical outcomes. Methods: Retrospective analysis of 100 patients hospitalized for COVID-19, allocated into: negative outcome group (NOG; n=56) and positive outcome group (POG; n=44). Vital signs [heart rate, systolic (SBP), diastolic and mean blood pressure (MAP), temperature, respiratory rate (RR) and peripheral oxygen saturation]/derived variables [pulse pressure (PP) and double product (DP)] and VPA were assessed in the first five days of hospitalization. ROC curves were used to identify cut-off points for predicting clinical outcomes. Results: Compared to the 1st day of hospitalization, POG showed a reduction in PP on the 3rd and 5th days, RR from the 3rd day, DP from the 4th day and SBP on the 5th day (p<0.05). Additionally, POG presented lower PP on the 2nd and 4th days (p<0.05), lower RR on the 4th day and lower variability of SBP and MAP (p<0.05) in relation to NOP. The ROC curve was able to predict negative outcomes when PP ≥ 40 mmHg on the 5th day of hospitalization (AUC: 0.63; p=0.02). Conclusion: Patients with a positive clinical evolution showed better behavior of signs/derived variables and BPV in the early phase of hospitalization. Furthermore, PP ≥ 40 mmHg on the 5th day of hospitalization was considered as a cut-off point to predict negative results.
DOI da versão traduzida: | https://doi.org/10.47066/2966-4837.2024.0002en
Keywords
Referências
1. Li M, Chen S, Xiang X, Wang Q, Liu X. Effects of SARS-CoV-2 and its functional receptor ACE2 on the cardiovascular system. Herz. 2020;45(7):659-62. http://doi.org/10.1007/ s00059-020-04989-x. PMid:33025029.
2. WHO: World Health Organization. Coronavirus disease (COVID-19) [Internet]. Geneva: WHO; 2023 [citado em 2023 Set 1]. Disponível em: https://www.who.int/health-topics/ coronavirus#tab=tab_1
3. NIH: National Institutes of Health. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines [Internet]. USA: NIH; 2021 [citado em 2023 Set 1]. Disponível em: https://www.ncbi. nlm.nih.gov/books/NBK570371/
4. Brekke IJ, Puntervoll LH, Pedersen PB, Kellett J, Brabrand M. The value of vital sign trends in predicting and monitoring clinical deterioration: a systematic review. PLoS One. 2019;14(1):e0210875. http://doi.org/10.1371/journal. pone.0210875. PMid:30645637.
5. Rechtman E, Curtin P, Navarro E, Nirenberg S, Horton MK. Vital signs assessed in initial clinical encounters predict COVID-19 mortality in an NYC hospital system. Sci Rep. 2020;10(1):21545. http://doi.org/10.1038/s41598-020- 78392-1. PMid:33298991.
6. Pimentel MAF, Redfern OC, Hatch R, Young JD, Tarassenko L, Watkinson PJ. Trajectories of vital signs in patients with COVID-19. Resuscitation. 2020;156:99-106. http://doi. org/10.1016/j.resuscitation.2020.09.002. PMid:32918984.
7. Parati G, Bilo G, Kollias A, Pengo M, Ochoa JE, Castiglioni P, et al. Blood pressure variability: methodological aspects, clinical relevance and practical indications for management - a European Society of Hypertension position paper. J Hypertens. 2023;41(4):527-44. http://doi.org/10.1097/ HJH.0000000000003363. PMid:36723481.
8. Schutte AE, Kollias A, Stergiou GS. Blood pressure and its variability: classic and novel measurement techniques. Nat Rev Cardiol. 2022;19(10):643-54. http://doi.org/10.1038/ s41569-022-00690-0. PMid:35440738.
9. Mena L, Pintos S, Queipo NV, Aizpúrua JA, Maestre G, Sulbarán T. A reliable index for the prognostic significance of blood pressure variability. J Hypertens. 2005;23(3):505- 11. http://doi.org/10.1097/01.hjh.0000160205.81652.5a. PMid:15716690.
10. He C, Liu C, Yang J, Tan H, Ding X, Gao X, et al. Prognostic significance of day-by-day in-hospital blood pressure variability in COVID-19 patients with hypertension. J Clin Hypertens (Greenwich). 2022;24(3):224-33. http://doi. org/10.1111/jch.14437. PMid:35293689.
11. Mena LJ, Felix VG, Melgarejo JD, Maestre GE. 24-Hour blood pressure variability assessed by average real variability: a systematic review and meta-analysis. J Am Heart Assoc. 2017;6(10):e006895. http://doi.org/10.1161/ JAHA.117.006895. PMid:29051214.
12. Brasil. Ministério da Saúde. Orientações para manejo de pacientes com COVI-19 [Internet]. Brasília: Ministério da Saúde; 2023 [citado em 2023 Set 1]. Disponível em: https:// www.gov.br/saude/pt-br/coronavirus/publicacoes-tecnicas/ recomendacoes/orientacoes-para-manejo-de-pacientes-com-covid-19/view
13. Guo A, Lu J, Tan H, Kuang Z, Luo Y, Yang T, et al. Risk factors on admission associated with hospital length of stay in patients with COVID-19: a retrospective cohort study. Sci Rep. 2021;11(1):7310. http://doi.org/10.1038/s41598-021- 86853-4. PMid:33790365.
14. Homan TD, Bordes SJ, Cichowski E. Physiology, pulse pressure. In: StatPearls Publishing. StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
15. Gobel FL, Norstrom LA, Nelson RR, Jorgensen CR, Wang Y. The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation. 1978;57(3):549-56. http://doi. org/10.1161/01.CIR.57.3.549. PMid:624164.
16. Park SB, Khattar D. Tachypnea. In: StatPearls Publishing. StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
17. Katch VL, McArdle WD, Katch FI. The cardiovascular system and exercise. In: Katch VL, McArdle WD, Katch FI. Essentials of Exercise Physiology. USA: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2011. p. 301-335.
18. Miller DJ, Capodilupo JV, Lastella M, Sargent C, Roach GD, Lee VH, et al. Analyzing changes in respiratory rate to predict the risk of COVID-19 infection. PLoS One. 2020;15(12):e0243693. http://doi.org/10.1371/journal. pone.0243693. PMid:33301493.
19. Tang KS, Medeiros ED, Shah AD. Wide pulse pressure: a clinical review. J Clin Hypertens (Greenwich). 2020;22(11):1960-7. http://doi.org/10.1111/jch.14051. PMid:32986936.
20. Chou CH, Yin JH, Lin YK, Yang FC, Chu TW, Chuang YC, et al. The optimal pulse pressures for healthy adults with different ages and sexes correlate with cardiovascular health metrics. Front Cardiovasc Med. 2022;9:930443. http://doi. org/10.3389/fcvm.2022.930443. PMid:36545016.
21. Nehring SM, Goyal A, Patel BC. C reactive protein. In: StatPearls Publishing. StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
22. Johns I, Moschonas KE, Medina J, Ossei-Gerning N, Kassianos G, Halcox JP. Risk classification in primary prevention of CVD according to QRISK2 and JBS3 ‘heart age’, and prevalence of elevated high-sensitivity C reactive protein in the UK cohort of the EURIKA study. Open Heart. 2018;5(2):e000849. http:// doi.org/10.1136/openhrt-2018-000849. PMid:30564373.
23. Mouhat B, Besutti M, Bouiller K, Grillet F, Monnin C, Ecarnot F, et al. Elevated D-dimers and lack of anticoagulation predict PE in severe COVID-19 patients. Eur Respir J. 2020;56(4):2001811. http://doi. org/10.1183/13993003.01811-2020. PMid:32907890.
24. Yao Y, Cao J, Wang Q, Shi Q, Liu K, Luo Z, et al. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: a case control study. J Intensive Care. 2020;8(1):49. http://doi.org/10.1186/s40560-020-00466-z. PMid:32665858.
25. Wagstaff AJ. Oxygen therapy. In: Bersten AD, Soni N, editors. Oh’s intensive care manual. Philadelphia: Butterworth- Heinemann; 2014. p. 327-340e3. http://doi.org/10.1016/ B978-0-7020-4762-6.00028-X.
26. González-Duarte A, Norcliffe-Kaufmann L. Is ‘happy hypoxia’ in COVID-19 a disorder of autonomic interoception? A hypothesis. Clin Auton Res. 2020;30(4):331-3. http://doi. org/10.1007/s10286-020-00715-z. PMid:32671502.
27. Rees EM, Nightingale ES, Jafari Y, Waterlow NR, Clifford SB, Pearson CA, et al. COVID-19 length of hospital stay: a systematic review and data synthesis. BMC Med. 2020;18(1):270. http://doi.org/10.1186/s12916-020-01726-3. PMid:32878619.
28. Boss GR, Seegmiller JE. Age-related physiological changes and their clinical significance. West J Med. 1981;135(6):434- 40. PMid:7336713.
29. Chester JG, Rudolph JL. Vital signs in older patients: age-related changes. J Am Med Dir Assoc. 2011;12(5):337-43. http://doi. org/10.1016/j.jamda.2010.04.009. PMid:21450180.
30. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020;20(6):669-77. http://doi.org/10.1016/S1473- 3099(20)30243-7. PMid:32240634.
31. Romero Starke K, Petereit-Haack G, Schubert M, Kämpf D, Schliebner A, Hegewald J, et al. The age-related risk of severe outcomes due to COVID-19 infection: a rapid review, meta-analysis, and meta-regression. Int J Environ Res Public Health. 2020;17(16):5974. http://doi.org/10.3390/ ijerph17165974. PMid:32824596.
32. Hu J, Wang Y. The clinical characteristics and risk factors of severe COVID-19. Gerontology. 2021;67(3):255-66. http:// doi.org/10.1159/000513400. PMid:33406518.
33. Ikram AS, Pillay S. Admission vital signs as predictors of COVID-19 mortality: a retrospective cross-sectional study. BMC Emerg Med. 2022;22(1):68. http://doi.org/10.1186/ s12873-022-00631-7. PMid:35488200.
34. Li FK, An DW, Guo QH, Zhang YQ, Qian JY, Hu WG, et al. Day-by-day blood pressure variability in hospitalized patients with COVID-19. J Clin Hypertens (Greenwich). 2021;23(9):1675-80. http://doi.org/10.1111/jch.14338. PMid:34331839.
Submetido em:
01/12/2023
Aceito em:
03/09/2024