Brazilian Journal of Respiratory, Cardiovascular and Critical Care Physiotherapy
https://bjr-assobrafir.org/article/5de007210e8825a7144ce1d5
Brazilian Journal of Respiratory, Cardiovascular and Critical Care Physiotherapy
Artigo Original

Quais fatores determinam o uso de oxigênio no treinamento físico de pacientes com DPOC?

Which factors determine the need for oxygen supplementation during exercise training in patients with COPD?

Antenor Rodrigues, Aline Gonçalves Nellessen, Fabio Issamu Ikezaki, Mariana B. Di Martino, Thais Sant`Anna, Nidia Aparecida Hernandes, Fabio Pitta

Downloads: 4
Views: 1149

Resumo

Introdução: O treinamento físico (TF) é fundamental na reabilitação pulmonar em pacientes com doença pulmonar obstrutiva crônica (DPOC). Uma parcela desses pacientes apresenta dessaturação periférica de oxigênio durante o exercício, necessitando de oxigênio (O2 ) suplementar. Objetivo: Analisar as diferenças entre pacientes com DPOC que necessitam ou não de oxigenoterapia durante o TF de alta intensidade; e identificar quais fatores influenciam sua necessidade. Métodos: Trinta e dois pacientes com DPOC foram avaliados quanto à função pulmonar (espirometria), força muscular respiratória (manovacuometria) e capacidade de exercício (Incremental Shuttle Walking Test [ISWT] e teste de caminhada de 6 minutos [TC6min]). Posteriormente, os pacientes foram incluídos em um programa de TF de alta intensidade (3 vezes/semana, 12 semanas), sendo separados em dois grupos quanto à necessidade de oxigenoterapia (G_O2 ; n=10) ou não (G_nãoO2 ; n=22). Resultados: O G_ O2 apresentou pior obstrução das vias aéreas (VEF1 26[21-28] vs 52[36-65] %predito; P<0,0001), menor pressão expiratória máxima (PEmax 79[53-91] vs 104[90-115] %predito, P=0,004) e menor capacidade de exercício (ISWT 295±62 vs 444±198m, P=0,03; TC6min 420[372-446] vs 480[433- 516]m, P=0,01; e TC6min em %pred 68[58-72] vs 80[67-86], P=0,01). No modelo de regressão incluindo PEmax em valores absolutos (P=0,02) e TC6min em %predito (P=0,03), apenas a distância percorrida no TC6min (%predito) determinou o uso de O2 durante o TF (Razão de prevalência [RP]=8,1; P=0,03). Conclusões: Pacientes com DPOC que necessitam de O2 durante um programa de treinamento físico de alta intensidade apresentam pior função pulmonar, força muscular expiratória e capacidade de exercício que pacientes que não necessitam de O2 durante o programa. A razão de prevalência de pacientes com pior desempenho no TC6min utilizarem O2 durante o treinamento físico é 8,1 vezes maior do que nos pacientes que apresentam melhor desempenho no teste.

Palavras-chave

Doença Pulmonar Obstrutiva Crônica; Exercício; Oxigenoterapia.

Abstract

Introduction: Exercise training (ET) is the “cornerstone” of pulmonary rehabilitation (PR) in patients with chronic obstructive pulmonary disease (COPD). A portion of these patients experience oxygen desaturation when performing exercise, needing oxygen supplementation. Aim: To analyse the differences between patients with COPD who need or not oxygen supplementation during high intensity ET; and to identify which factors influence this need. Methods: Thirty-two patients with COPD were assessed concerning lung function (spirometry), respiratory muscle strength (manovacuometry) and exercise capacity (Incremental Shuttle Walking Test [ISWT] and 6-Minute Walking Test [6MWT]). Further, patients were included in a high intensity ET program (3 times/week, 12 weeks), and divided into 2 groups: with the need of oxygen supplementation (G_O2 n=10) or not (G_notO2 n=22) during the first week of ET. Results: When compared with G_notO2 , G_O2 group had worse airway obstruction (FEV1 26[21-28] vs 52[36-65] %pred; P<0.0001), maximum expiratory pressure (PEmax 79[53-91] vs 104[90-115] %pred; P=0.004) and exercise capacity (ISWT 295±62 vs 444±198m, P=0.03; 6MWT %predicted of 68[58-72] vs 80[67-86], P=0.01). In a regression model including PEmax in absolute values (P=0.02) and 6MWT %predicted (P=0.03), only 6MWT distance (%predicted) was determinant of oxygen need during ET (prevalent ratio = 8.1; P=0.03). Conclusion: Patients with COPD who need oxygen supplementation during high-intensity ET have worse pulmonary function, expiratory muscle force and exercise capacity in comparison with patients who do not need it. The prevalence ratio for patients with more impaired exercise capacity assessed by the 6MWT distance needing oxygen supplementation during high-intensity ET is 8.1 times higher than patients with better perfomance in the test.

Keywords

Chronic Obstructive Pulmonary Disease; Exercise; Oxygen Inhalation Therapy

References

1. Vogiatzis I, Zakynthinos S. The physiological basis of rehabilitation in chronic heart and lung disease. J Appl Physiol. 2013 Jul 1;115(1):16-21.

2. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. A statement of the American Thoracic Society and European Respiratory Society. Am J Respir Crit Care Med. 1999 Apr;159(4 Pt 2):S1-40.

3. Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013 Oct 15;188(8):e13-64.

4. Pitta F, Troosters T, Probst VS, Langer D, Decramer M, Gosselink R. Are patients with COPD more active after pulmonary rehabilitation? Chest. 2008 Aug;134(2):273-80.

5. Probst VS, Kovelis D, Hernandes NA, Camillo CA, Cavalheri V, Pitta F. Effects of 2 exercise training programs on physical activity in daily life in patients with COPD. Respir Care. 2011 Nov;56(11):1799-807.

6. Griffiths TL, Burr ML, Campbell IA, Lewis-Jenkins V, Mullins J, Shiels K, et al. Results at 1 year of outpatient multidisciplinary pulmonary rehabilitation: a randomised controlled trial. Lancet. 2000 Jan 29;355(9201):362-8.

7. Vogiatzis I1, Terzis G, Nanas S, Stratakos G, Simoes DC, Georgiadou O, et al. Skeletal muscle adaptations to interval training in patients with advanced COPD. Chest. 2005 Dec;128(6):3838-45.

8. Rabinovich RA1, Louvaris Z, Raste Y, Langer D, Van Remoortel H, Giavedoni S, et al. Validity of physical activity monitors during daily life in patients with COPD. Eur Respir J. 2013 Nov;42(5):1205-15.

9. Casaburi R, Patessio A, Ioli F, Zanaboni S, Donner CF, Wasserman K. Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease. Am Rev Respir Dis. 1991 Jan;143(1):9-18.

10. Maltais F1, LeBlanc P, Jobin J, Bérubé C, Bruneau J, Carrier L, et al. Intensity of training and physiologic adaptation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1997 Feb;155(2):555-61.

11. Mahler DA, Gifford AH, Waterman LA, Ward J, Machala S, Baird JC. Mechanism of greater oxygen desaturation during walking compared with cycling in patients with COPD. Chest. 2011 Aug;140(2):351-8.

12. Dyer F, Callaghan J, Cheema K, Bott J. Ambulatory oxygen improves the effectiveness of pulmonary rehabilitation in selected patients with chronic obstructive pulmonary disease. Chron Respir Dis. 2012 May;9(2):83-91.

13. Emtner M, Porszasz J, Burns M, Somfay A, Casaburi R. Benefits of supplemental oxygen in exercise training in nonhypoxemic chronic obstructive pulmonary disease patients. Am J Respir Crit Care Med. 2003 Nov 1;168(9):1034-42.

14. Corrado A, Renda T, Bertini S. Long-term oxygen therapy in COPD: evidences and open questions of current indications. Monaldi Arch Chest Dis. 2010 Mar;73(1):34-43.

15. Ringbaek T, Martinez G, Lange P. The long-term effect of ambulatory oxygen in normoxaemic COPD patients: a randomised study. Chron Respir Dis. 2013 May;10(2):77-84.

16. Nonoyama ML, Brooks D, Lacasse Y, Guyatt GH, Goldstein RS. Oxygen therapy during exercise training in chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2007 Apr 18;(2):CD005372.

17. Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013 Feb 15;187(4):347-65.

18. Neder JA, Andreoni S, Lerario MC, Nery LE. Reference values for lung function tests. II. Maximal respiratory pressures and voluntary ventilation. Braz J Med Bio Res. 1999 Jun;32(6):719-27.

19. Pereira CAC ST, Rodrigues SC. New reference values for forced spirometry in white adults in Brazil. J Bras Pneumol. 2007 Jul-Aug;33(4):397-406. Portuguese.

20. Black LF, Hyatt RE. Maximal respiratory pressures: normal values and relationship to age and sex. Am Rev Respir Dis. 1969 May;99(5):696-702.

21. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002 Jul 1;166(1):111-7.

22. Troosters T, Gosselink R, Decramer M. Six minute walking distance in healthy elderly subjects. Eur Respir J. 1999 Aug;14(2):270-4.

23. Singh SJ, Morgan MD, Scott S, Walters D, Hardman AE. Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax. 1992 Dec;47(12):1019-24.

24. Singh SJ, Morgan MD, Hardman AE, Rowe C, Bardsley PA. Comparison of oxygen uptake during a conventional treadmill test and the shuttle walking test in chronic airflow limitation. Eur Respir J. 1994 Nov;7(11):2016-20.

25. Cavalheri V, Hernandes NA, Camillo CA, Probst VS, Ramos D, Pitta F. Estimation of maximal work rate based on the 6-minute walk test and fat-free mass in chronic obstructive pulmonary disease. Arch Phys Med Rehabil. 2010 Oct;91(10):1626-8.

26. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377-81.

27. Horowitz MB, Littenberg B, Mahler DA. Dyspnea ratings for prescribing exercise intensity in patients with COPD. Chest. 1996 May;109(5):1169-75.

28. Frontera WR, Meredith CN, O’Reilly KP, Evans WJ. Strength training and determinants of VO2max in older men. J Appl Physiol. 1990 Jan;68(1):329-33.

29. Corriveau ML, Rosen BJ, Dolan GF. Oxygen transport and oxygen consumption during supplemental oxygen administration in patients with chronic obstructive pulmonary disease. Am J Med. 1989 Dec;87(6):633-7.

30. Somfay A, Porszasz J, Lee SM, Casaburi R. Dose-response effect of oxygen on hyperinflation and exercise endurance in nonhypoxaemic COPD patients. Eur Respir J. 2001 Jul;18(1):77-84.

31. Revill SM, Noor MZ, Butcher G, Ward MJ. The endurance shuttle walk test: an alternative to the six-minute walk test for the assessment of ambulatory oxygen. Chron Respir Dis. 2010;7(4):239-45.

32. Rooyackers JM, Dekhuijzen PN, Van Herwaarden CL, Folgering HT. Training with supplemental oxygen in patients with COPD and hypoxaemia at peak exercise. Eur Respir J. 1997 Jun;10(6):1278-84.

33. Stein DA, Bradley BL, Miller WC. Mechanisms of oxygen effects on exercise in patients with chronic obstructive pulmonary disease. Chest. 1982 Jan;81(1):6-10.

34. Engelen MP, Schols AM, Does JD, Gosker HR, Deutz NE, Wouters EF. Exercise-induced lactate increase in relation to muscle substrates in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000 Nov;162(5):1697-704.

35. Maltais F, Jobin J, Sullivan MJ, Bernard S, Whittom F, Killian KJ, et al. Metabolic and hemodynamic responses of lower limb during exercise in patients with COPD. J Appl Physiol. 1998 May;84(5):1573-80.

36. Chiappa GR, Queiroga F Jr, Meda E, Ferreira LF, Diefenthaeler F, Nunes M, et al. Heliox improves oxygen delivery and utilization during dynamic exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009 Jun 1;179(11):1004-10.

37. Decramer M. Respiratory muscles in COPD: regulation of trophical status. Verth K Acad Geneeskd Belg. 2001;63(6):577-602; discussion 602-4.

38. Weiner P, Magadle R, Beckerman M, Weiner M, Berar-Yanay N. Specific expiratory muscle training in COPD. Chest. 2003 Aug;124(2):468-73.

39. Scherer TA, Spengler CM, Owassapian D, Imhof E, Boutellier U. Respiratory muscle endurance training in chronic obstructive pulmonary disease: impact on exercise capacity, dyspnea, and quality of life. Am J Respir Crit Care Med. 2000 Nov;162(5):1709-14.

5de007210e8825a7144ce1d5 1571231544 Articles
Links & Downloads

BJR

Share this page
Page Sections