Brazilian Journal of Respiratory, Cardiovascular and Critical Care Physiotherapy
https://bjr-assobrafir.org/article/5ddfc6920e88258e794ce1d5
Brazilian Journal of Respiratory, Cardiovascular and Critical Care Physiotherapy
Artigo Original

Comparação entre sensores de movimento quanto à estimativa do gasto energético em jovens saudáveis

Comparison between motion sensors for estimating energy expenditure in healthy young individuals

Lorena Paltanin Schneider, Thaís Sant'Anna, Gabriela Nandi, Karina Couto Furlanetto, Nidia Aparecida Hernandes, Fabio Pitta

Downloads: 1
Views: 1022

Resumo

Introdução: Segundo o Colégio Americano de Medicina Esportiva (ACSM), o gasto energético de 500 a 1000 kcal/semana traz benefícios à saúde. Sendo assim, é relevante a correta avaliação do nível de atividade física na vida diária (AFVD), mesmo em indivíduos jovens e saudáveis. O DirectLife®, um recém-lançado monitor de atividade física portátil, poderia ser uma opção adequada para se estimar o gasto energético na vida diária. Objetivos: Avaliar o desempenho do DirectLife® quanto à estimativa do gasto energético diário em jovens universitários saudáveis. Além disso, comparar e correlacionar três diferentes monitores de atividade física quanto ao mesmo desfecho. Métodos: 15 jovens saudáveis (7 homens, 21 [20-22] anos, IMC 27±4 kg/m²) tiveram seu nível de AFVD avaliado objetivamente por meio de três sensores de movimento durante sete dias consecutivos da semana (12h/dia, sendo a média dos sete dias utilizada para análise): DirectLife® (Philips, Estados Unidos) [DL]; multissensor SenseWear armband® (BodyMedia, Estados Unidos) [SAB] e Digiwalker SW-701® (Yamax, Japão) [DW]. Resultados: O gasto energético do DL correlacionou-se fortemente com o gasto energético quantificado pelo SAB (0,86 ≤ r ≤ 0,89). O gasto energético fornecido pelo DW correlacionouse com DL (r = 0,79) e SAB (0,74 ≤ r ≤ 0,76), embora diferenças marcantes tenham sido observadas entre os aparelhos na classificação dos indivíduos como fisicamente ativos ou inativos. Conclusão: O DirectLife® mostrou desempenho adequado para a estimativa do gasto energético em jovens saudáveis, considerandose sua alta correlação com o método, critério utilizado neste estudo. Adicionalmente, os três monitores utilizados correlacionaram-se entre si, quanto à estimativa do gasto energético; porém, com discrepâncias na identificação de (in)atividade física.

Palavras-chave

Metabolismo energético; Atividade motora; Acelerometria.

Abstract

Background: According to the recommendations of the American College of Sports Medicine (ACSM), an energy expenditure of 500 to 1000 kcal/week provides health benefits. Thus, the correct assessment of the physical activity level in daily life (PADL) is relevant, even in healthy young individuals. The DirectLife®, a recently released and portable physical activity monitor, could be a good option to measure PADL. Objective: To assess the performance of the DirectLife® regarding the daily energy expenditure estimation in healthy young University students. In addition, to compare and correlate three different physical activity monitors concerning the same outcome. Methods: Fifteen healthy young students (7 men, 21[20-22] years, BMI 27±4kg/m²) had their PADL objectively assessed using three motion sensors during seven consecutives weekdays (12 hours/day; the average of seven days was used for analysis): DirectLife® (Philips, United States) [DL]; multisensor SenseWear armband® (BodyMedia, United States) [SAB]; and Digiwalker SW-701® (Yamax, Japan) [DW]. Results: The energy expenditure provided by the DL was highly correlated with the energy expenditure provided by the SAB (0.86 ≤ r ≤ 0.89). Energy expenditure provided by the DW was correlated with DL (r = 0.79) and SAB (0.74 ≤ r ≤ 0.76), although marked differences were observed among the devices concerning the classification of subjects as physically active or inactive. Conclusion: The DirectLife® presented a good performance for estimating the energy expenditure in daily life of healthy young students, considering its high correlation with the criterion method established in this study. Additionally, the three motion sensors were correlated concerning the energy expenditure estimative, although with important discrepancies in the identification of physical (in)activity.

Keywords

Energetic metabolism; Motor activity; Accelerometry.

References

1. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011 Jul;43(7):1334-59.

2. Pitta F, Troosters T, Probst VS, Spruit MA, Decramer M, Gosselink R. Quantifying physical activity in daily life with questionnaires and motion sensors in COPD. Eur Respir J. 2006 May;27(5):1040-55.

3. Montoye HJ. Introduction: evaluation of some measurements of physical activity and energy expenditure. Med Sci Sports Exerc. 2000 Sep;32(9 Suppl):S439-41.

4. Ainslie P, Reilly T, Westerterp K. Estimating human energy expenditure: a review of techniques with particular reference to doubly labelled water. Sports Med. 2003;33(9):683-98.

5. Vanhees L, Lefevre J, Philippaerts R, Martens M, Huygens W, Troosters T, et al. How to assess physical activity? How to assess physical fitness? Eur J Cardiovasc Prev Rehabil. 2005 Apr;12(2):102–14.

6. Jakicic JM, Marcus M, Gallagher KI, Randall C, Thomas E, Goss FL, et al. Evaluation of the SenseWear Pro Armband to assess energy expenditure during exercise. Med Sci Sports Exerc. 2004 May; 36: 897-904.

7. Tudor-Locke CE, Myers AM. Challenges and opportunities for measuring physical activity in sedentary adults. Sports Med. 2001 Feb;31(2):91-100.

8. Schneider PL, Crouter SE, Bassett DR. Pedometer measures of free-living physical activity: comparison of 13 models. Med Sci Sports Exerc. 2004 Feb;36(2):331-5.

9. Schneider PL, Crouter SE, Lukajic O, Bassett DR Jr. Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Med Sci Sports Exerc. 2003 Oct;35(10):1779-84.

10. Tudor-Locke C, Bassett DR, Shipe MF, McClain JJ. Pedometry methods for assessing free-living adults. J Phys Act Health. 2011 Mar;8(3):445-53.

11. Tudor-Locke C, Craig CL, Aoyagi Y, Bell RC, Croteau KA, De Bourdeaudhuij I, et al. How many steps/day are enough? For older adults and special populations. Int J Behav Nutr Phys Activity. 2011 Jul 28;8: 80.

12. Fruin ML, Rankin JW. Validity of a multi-sensor armband in estimating rest and exercise energy expenditure. Med Sci Sports Exerc. 2004 Jun;36(6):1063-9.

13. Patel SA, Benzo RP, Slivka WA, Sciurba FC. Activity monitoring and energy expenditure in COPD patients: a validation study. COPD. 2007 Jun;4(2):107-12.

14. Furlanetto KC, Bisca GW, Oldemberg N, Sant’Anna TJ, Morakami FK, Camillo CA, et al. Step counting and energy expenditure estimation in patients with chronic obstructive pulmonary disease and healthy elderly: accuracy of 2 motion sensors. Arch Phys Med Rehabil. 2010 Feb;91(2):261-7.

5ddfc6920e88258e794ce1d5 1571231544 Articles
Links & Downloads

BJR

Share this page
Page Sections