Ausculta pulmonar em pacientes submetidos à ventilação mecânica: influência dos ajustes ventilatórios sobre a concordância e detecção dos ruídos adventícios
Pulmonary auscultation in patients undergoing mechanical ventilation: influence of ventilatory settings on the agreement and detection of adventitious breath sounds
Paulo Eugênio Silva, Antônio Carlos Magalhães Duarte, Alessandro de Moura Almeida, Andrei Pinheiro Gomes, Flaviane Ribeiro Souza, Palmireno Pinheiro Ferreira
Resumo
Introdução: A ausculta pulmonar é um método de avaliação comumente utilizado pelos fisioterapeutas para definir a conduta e avaliar a eficácia do tratamento empregado. Tornar este método diagnóstico mais preciso e reprodutível é importante para uma abordagem adequada. Objetivos: Avaliar o impacto de ajustes de fluxo e volume corrente na ventilação mecânica (VM) sobre o nível de detecção dos ruídos adventícios e da ausculta pulmonar em pacientes submetidos à ventilação mecânica. Métodos: Foi realizado um estudo observacional de corte transversal em que foram avaliados 23 pacientes submetidos à ventilação mecânica. A ausculta foi realizada, com estetoscópio acústico, por dois fisioterapeutas especialistas, com três diferentes ajustes no respirador: A1: volume corrente (VT) de 8 ml/kg e fluxo de 40 L/min; A2: VT de 20 ml/kg e fluxo de 40 L/min; A3: VT de 20 ml/kg e fluxo de 80 L/min. A concordância foi avaliada pelo Kappa ajustado para viés de prevalência (KAVP) onde: 0,00-0,20 = concordância pobre; 0,21-0,40 = regular; 0,41-0,60 = moderada; 0,61-0,80 = boa; 0,81- 1,00 = muito boa. A prevalência da detecção dos ruídos foi avaliada pelo Teste Q de Cochran e considerada estatisticamente significante quando P<0,05. Resultados: O maior valor de concordância interexaminador para roncos, crepitações finas, crepitações grossas e som brônquico foi respectivamente de KAVP=0,74; 0,74; 0,91 e 0,39 todos com P<0,05. A análise da prevalência de detecção evidenciou que os roncos foram mais percebidos no A3 (33 detecções P<0,001), as crepitações finas e grossas no A2, (23 e 7 detecções, P<0,001 e P<0,05, respectivamente) e som brônquico em A3 (31 detecções P=0,001). Conclusão: Foi demonstrado que ajustes específicos nos parâmetros do respirador podem interferir no nível de concordância e na prevalência de detecção dos ruídos adventícios durante a ausculta pulmonar.
Palavras-chave
Abstract
Introduction: Pulmonary auscultation is an assessment method commonly used by physiotherapists to define the conduct and to evaluate treatment effectiveness. To deliver more appropriate therapeutics, it is necessary that pulmonary auscultation is precise and reproducible. Objective: To evaluate the influence of the mechanical ventilation settings (flow and tidal volume) on the level of agreement of auscultation and to investigate the impact on the detection of adventitious breath sounds in patients undergoing mechanical ventilation. Methods: It was conducted an observational study which evaluated 23 patients submitted to mechanical ventilation. Auscultation was performed with acoustic stethoscope for two expert physical therapists, with three settings on the ventilator parameters: A1: tidal volume (VT) 8 ml/kg and flow of 40 L/min; A2: VT 20 ml/kg and a flow of 40 l/min; A3: VT 20 ml/kg and flow 80 l/min. The agreement was assessed by Kappa adjusted for bias prevalence (KAVP). Agreement was deemed poor if scores ranged from 0.00 to 0.20, regular if ranged from 0.21 to 0.40, moderate if ranged from 0.41-0.60, good if ranged from 0.61 to 0.80 and very good if ranged from 0.81 to 1.00. The prevalence of adventitious sounds detection was evaluated by Cochran’s Q Test and statistical significance set as p<0.05. Results: Inter-observer agreement was of KAVP=0.74 for rhonchi; 0.74 for fine crackles, 0.91 for coarse crackles and 0.39 for bronchial sounds (p<0.05 for all). The analysis of the prevalence for adventitious breath sound detection showed that the rhonchi were better perceived in A3 (33 detections p<0.001), the fine and coarse crackles in A2 (23 and 7 detections, p<0.001 and p<0.05 respectively) and bronchial sounds in A3 (31 detections p=0.001). Conclusion: It was demonstrated that specific adjustments on the ventilator parameters can influence the level of agreement and the prevalence of detection of adventitious sounds during pulmonary auscultation.
Keywords
References
1. Murphy RL. In defense of the stethoscope. Respir Care. 2008 Mar;53(3):355-69.
2. Gross V, Dittmar A, Penzel T, Schüttler F, Von Wichert P. The relationship between normal lung sounds, age, and gender. Am J Respir Crit Care Med. 2000 Sep;162(3):905-9.
3. Mangione S, Duffy FD. The teaching of chest auscultation during primary care training: has anything changed in the 1990s? Chest. 2003 Oct;124(4):1430-6.
4. Russi EW. Lung auscultation - a useless ritual? Swiss Med Wkly. 2005 Sep 3;135(35-36):513-4.
5. Hubmayr RD. The times are a-changin’: should we hang up the stethoscope? Anesthesiology. 2004;100(1):1-2.
6. Brooks D, Thomas J. Interrater reliability of auscultation of breath sounds among physical therapists. Phys Ther. 1995 Dec;75(12):1082-8.
7. Brooks D, Wilson L, Kelsey C. Accuracy and reliability of “specialized” physical therapists in auscultating tape-recorded lung sounds. Physiother Can. 1993 Winter;45(1):21-4.
8. Leuppi JD, Dieterle T, Koch G, Martina B, Tamm M, Perruchoud AP, et al. Diagnostic value of lung auscultation in an emergency room setting. Swiss Med Wkly. 2005 Sep 3;135(35-36):520-4.
9. Spiteri MA, Cook DG, Clarke SW. Reliability of eliciting physical signs in examination of the chest. Lancet. 1988 Apr 16;1(8590):873-5.
10. Allingame S, Williams T, Jenkins S, Tucker B. Accuracy and reliability of physiotherapists in the interpretation of tape-recorded lung sounds. Aust J Physiother. 1995;41(3):179-84.
11. Workum P, DelBono EA, Holford SK, Murphy RL Jr. Observer agreement, chest auscultation, and crackles in asbestos-exposed workers. Chest. 1986 Jan;89(1):27-9.
12. Bergstresser T, Ofengeim D, Vyshedskiy A, Shane J, Murphy R. Sound transmission in the lung as a function of lung volume. J Appl Physiol. 2002 Aug;93(2):667-74.
13. Kiyokawa H, Greenberg M, Shirota K, Pasterkamp H. Auditory detection of simulated crackles in breath sounds. Chest. 2001 Jun;119(6):1886-92.
14. Kraman SS. The relationship between airflow and lung sound amplitude in normal subjects. Chest. 1984 Aug;86(2):225-9.
15. Jones A, Jones RD, Kwong K, Burns Y. Effect of positioning on recorded lung sound intensities in subjects without pulmonary dysfunction. Phys Ther. 1999 Jul;79(7):682-90.
16. Fiz JA, Gnitecki J, Kraman SS, Wodicka GR, Pasterkamp H. Effect of body position on lung sounds in healthy young men. Chest. 2008 Mar;133(3):729-36.
17. Abella M, Formolo J, Penney DG. Comparison of the acoustic properties of six popular stethoscopes. J Acoust Soc Am. 1992 Apr;91(4 Pt 1):2224-8.
18. Forgacs P. The functional basis of pulmonary sounds. Chest. 1978 Mar;73(3):399-405.
19. Staszko KF, Lincho C, Engelke V da C, Fiori NS, Silva KC, Nunes EI, Zhang L. Pulmonary auscultation terminology employed in Brazilian medical journals between January of 1980 and December of 2003. J Bras Pneumol. 2006 Sep-Oct;32(5):400-4.
20. Laros KD. Diagnosis, definition and classification in chronic generalized respiratory disorder. A proposal to come to a manageable clinical classification system in the human being. An answer to the stimulating report of the ACCP-ATS joint committee on pulmonary nomenclature. Respiration. 1977;34(5):250-5.
21. Sim J, Wright CC. The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys Ther. 2005 Mar;85(3):257-68.
22. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977 Mar;33(1):159-74.
23. Jones AY, Jones RD, Kwong K, Burns Y. The effect on sound generation of varying both gas flow rate and the viscosity of sputum-like gel in a simple tubular model. Lung. 2000;178(1):31-40.
24. Vena A, Perchiazzi G, Giuliani R, Fiore T, Hedenstierna G. Acoustic effects of positive endexpiratory pressure on normal lung sounds in mechanically ventilated pigs. Clin Physiol Funct Imaging. 2006 Jan;26(1):45-53.
25. Peták F, Habre W, Babik B, Tolnai J, Hantos Z. Crackle-sound recording to monitor airway closure and recruitment in ventilated pigs. Eur Respir J. 2006 Apr;27(4):808-16.
26. Deguchi F, Hirakawa S, Gotoh K, Yagi Y, Ohshima S. Prognostic significance of posturally induced crackles. Long-term follow-up of patients after recovery from acute myocardial infarction. Chest. 1993 May;103(5):1457-62.
27. Mangione S, Nieman LZ. Pulmonary auscultatory skills during training in internal medicine and family practice. Am J Respir Crit Care Med. 1999 Apr;159(4 Pt 1):1119-24.
28. Wilkins RL, Dexter JR, Murphy RL Jr, DelBono EA. Lung sound nomenclature survey. Chest. 1990 Oct;98(4):886-9.
29. Pasterkamp H, Kraman SS, Wodicka GR. Respiratory sounds. Advances beyond the stethoscope. Am J Respir Crit Care Med. 1997 Sep;156(3 Pt 1):974-87.