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Abstract
Background: Cardiovascular diseases are a leading cause of mortality worldwide, with the 
COVID-19 pandemic intensifying their impact on intensive care unit outcomes. Functional 
impairments and reduced mobility among critically ill cardiovascular patients are linked to 
adverse outcomes, but their predictive value for mortality during intensive care hospitalization 
with COVID-19 remains underexplored. Aim: This study employs machine learning and 
explainable artificial intelligence to identify key predictors and optimize intervention 
strategies. Methods: This retrospective study analyzed data from 100 critically ill patients 
with cardiovascular diseases and COVID-19 admitted to a private hospital in Brazil. Functional 
assessments included scores of global muscle strength and mobility at admission. Machine 
learning models—Logistic Regression, Decision Tree, Random Forest, CatBoost, and 
Explainable Boosting Machine—were developed in Python. Interpretability analyses were 
performed using Shapley Additive Explanations to determine the most relevant predictors. 
Results: The best-performing model, Random Forest, achieved a sensitivity of 90.5% and 
specificity of 83.9%, with an accuracy of 0.92 (95% confidence interval: 0.83–1.00). Passive 
kinesiotherapy, restricted mobility, and invasive mechanical ventilation were strongly 
associated with in-hospital mortality, while active mobilizations such as walking and standing 
predicted better survival outcomes. Feature relevance analysis revealed critical feature 
interactions involving oxygenation levels, sedation, and mobility variables on mortality risks. 
Conclusion: Machine learning approaches identified predictors of mortality and reinforced 
the protective effects of active physiotherapy interventions for critically ill cardiovascular 
patients with COVID-19. These findings support the application of data-driven strategies to 
optimize rehabilitation practices in intensive care units and suggest the need for validation 
in larger populations.
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Resumo
Introdução: As doenças cardiovasculares são uma das principais causas de mortalidade em 
todo o mundo, com a pandemia de COVID-19 intensificando seu impacto nos desfechos em 
unidades de terapia intensiva. Comprometimentos funcionais e mobilidade reduzida em 
pacientes críticos com doença cardiovascular estão associados a desfechos adversos, mas 
seu valor preditivo para mortalidade durante a internação na unidade de terapia intensiva 
devido à COVID-19 ainda não foi explorado. Objetivo: Este estudo utiliza aprendizado de 
máquina e inteligência artificial explicável (XAI) para identificar os principais preditores e 
otimizar estratégias de intervenção. Métodos: Este estudo retrospectivo analisou dados de 
100 pacientes críticos com doenças cardiovasculares e COVID-19 internados em um hospital 
privado no Brazil. As avaliações funcionais incluíram escores de força muscular global e 
mobilidade no momento da admissão. Modelos de aprendizado de máquina—Regressão 
Logística, Árvore de Decisão, Random Forest, CatBoost e Explainable Boosting Machine—foram 
desenvolvidos em Python. A interpretação dos modelos foi realizada com base na técnica de 
Shapley Additive Explanations para identificar os preditores mais relevantes. Resultados: 
O modelo com melhor desempenho, Random Forest, obteve uma sensibilidade de 90,5% 
e especificidade de 83,9%, com acurácia de 0,92 (intervalo de confiança de 95%: 0,83–1,00). 
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Building on the findings of our previous study12, 
which highlighted the association between functional 
characteristics and physiotherapy interventions with 
ICU outcomes in patients with CVD, this study employs 
advanced machine learning models and explainable 
artificial intelligence to revisit and expand upon these 
findings. We aim to provide deeper insights into their 
association with in-ICU mortality in older adults with CVD 
and COVID-19. Furthermore, this study introduces the 
novel application of attribute machine learning analysis 
to evaluate the impact of physiotherapy interventions.

METHODS

Ethics
The study protocol follows national resolution No. 

466/2012 and the World Medical Association Declaration 
of Helsinki. The Institutional Ethics Committee approved 
this research protocol (No. 19966919.7.0000.5235), waiving 
the informed consent form because patient data were de-
identified before subsequent analysis and the research 
protocol did not affect the hospital’s treatment protocols 
of the inpatients.

Study design and reporting
This retrospective, single-center study analyzed data 

from February to November 2020, collected from ICU 
patients at a private hospital in Curitiba, Paraná, Brazil. 
Inclusion criteria encompassed CVD diagnosis confirmed 
by clinical and laboratory tests, functional assessment by 
a physiotherapist, and SARS-CoV-2 testing at admission. 
Hospitalizations were included if ICU stays exceeded 
12 hours, considering a minimum time necessary for an 
initial physiotherapeutic evaluation and to ensure clinical 
stability for functional assessments. Re-admissions within 
the study period were excluded. Data were obtained by 
the principal investigator through information previously 
contained in electronic medical records, examination 
reports, and notes of the health professional staff 
involved in the care of the patients. This study is reported 
following the REporting of studies Conducted using 
Observational Routinely-collected health Data (RECORD) 
Statement17.

INTRODUCTION
Cardiovascular diseases (CVD) remain the leading 

cause of death globally, accounting for an estimated 31% 
of all mortalities, or about 17.9 million deaths annually1. 
In Brazil, CVD contributed to 267,635 deaths in 1990 and 
424,058 deaths in 20152. Despite global trends indicating a 
reduction in CVD-related mortality risks, recent data show 
a plateauing of this decline in Brazil3,4. Population aging 
and therapeutic advancements have extended survival 
rates but increased the prevalence of CVD and related 
hospitalizations5.

The emergence of the new coronavirus disease 
(COVID-19) pandemic further exacerbated the burden of 
CVD. Patients with pre-existing CVD were found to have 
higher susceptibility to severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) infections, longer hospital 
stays, and increased mortality rates6-8. In ICU settings, older 
adults often experience functional declines, with reduced 
musculoskeletal strength and mobility contributing to 
poorer outcomes9,10.

Patients with COVID-19 can improve their mobility 
at hospital discharge and have a higher probability of 
discharging home with increased frequency and longer 
mean duration of physiotherapy visits11. In a previous 
study, we found that admission-impaired functional 
characteristics and specific physiotherapy interventions 
were associated with a higher risk of in-ICU death12. 
However, the specific impacts of functional status and 
physiotherapy interventions in CVD patients hospitalized 
with COVID-19 remained insufficiently explored.

Machine learning has been applied in predicting 
COVID-19 outcomes. Dan et al.13 demonstrated the utility 
of artificial neural networks in predicting ICU admissions 
based on clinical severity scores and white blood cell 
counts. Similarly, Akram et al.14 employed discrete wavelet 
transform and extended segmentation-based fractal 
texture analysis methods to extract relevant features 
from CT images and Naive Bayes classifiers to distinguish 
COVID-19 from other respiratory diseases. Exploratory 
Spatial Data Analysis (ESDA) by Scarpone et al.15 revealed 
significant socio-economic and infrastructural variables 
influencing COVID-19 case distributions. Cheng  et  al.16 
utilized Random Forest algorithms to predict ICU transfers 
in COVID-19 patients, achieving predictive accuracy of 90%.

A cinesioterapia passiva, mobilidade restrita e ventilação mecânica invasiva foram fortemente 
associadas à mortalidade hospitalar, enquanto mobilizações ativas, como caminhar e 
ficar em pé, previram melhores desfechos de sobrevivência. A análise de relevância das 
variáveis revelou interações críticas envolvendo níveis de oxigenação, sedação e métricas de 
mobilidade. Conclusão: Técnicas de aprendizado de identificaram preditores de mortalidade 
e reforçaram o efeito protetor das intervenções fisioterapêuticas ativas em pacientes críticos 
com doença cardiovascular e COVID-19. Esses achados apoiam adoção de estratégias de 
reabilitação orientadas por dados clínicos em unidades de terapia intensiva, com necessidade 
de validação em populações maiores.

Palavras-chave: Cuidado Crítico; Fisioterapia; Aprendizado de Máquina.
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No prospective sample size calculation was performed 
for this secondary analysis. The present study used 
data from a previous retrospective cohort12, whose 
sample size calculation determined that a minimum of 
96 participants would be required to estimate overall 
risk with a margin of error ≤ 10% and a true outcome 
proportion equal to 50%.

Setting and participants
This study retrospectively analyzed all data from 

patients consecutively hospitalized at the ICU. Patients 
who had a primary diagnosis of CVD after a complete 
cl inical exam and laboratory testing—including 
laboratory blood tests, electrocardiogram, blood 
pressure, and/or echocardiography as prescribed—
admission assessment by a physiotherapist, and tested 
for SARS-CoV-2 infection at admission were included. 
Length of ICU stay was defined as admissions exceeding 
12 hours. Re-admissions to the ICU within the study 
period were excluded from the analysis.

Clinical measurements
All admission data were collected within <24 h of ICU 

hospitalization. Data were collected retrospectively from 
electronic medical recordings regarding demographics, 
vital signs, laboratory, gasometry, presence of CVD 
and comorbidities, and drugs in continuous use. Date 
of hospital admission and discharge from the ICU or 
death were collected for computing the total length of 
ICU stay. Overall muscle strength was assessed by the 
Medical Research Council (MRC) scale that uses a 6-point 
scale of 6 muscle groups bilaterally. Representative 
scores comprised the sum of points observed for each 
muscle group, ranging from 0 (no muscle activity) to 
30 (maximal muscle strength)18. Mobility was assessed 
by the ICU Mobility Scale (IMS). The score varies between 
0 expressing low mobility (patient who only performs 
passive exercises in bed) and 10 expressing high mobility 
(the patient who presents independent walking, without 
assistance)19.

Physiotherapy interventions
Exposure to each routine physiotherapy intervention 

was defined as using a given therapeutic resource at 
any time during the total length of stay in the ICU, thus 
registered as dichotomous variables (‘yes’ = 1; ‘no’ = 0). 
Ventilatory support was characterized by the use of non-
invasive mechanical ventilation, through an orofacial or 
facial interface connected to the mechanical ventilator 
in one (CPAP) or two (BiPAP) pressure levels ventilation 
modes; or invasive ventilatory support, in which the 
patient was connected through an orotracheal or tracheal 
prosthesis in controlled ventilatory modes, controlled 
assistance and/or spontaneous; patients diagnosed with 
acute respiratory distress syndrome, even when COVID-19 

negative, were used protective strategy ventilatory 
parameters, which may require alveolar recruitment 
through the prone position or recruitment through the 
gradual increase of PEEP up to 35 cmH2O and subsequent 
titration of ideal PEEP, whereas that they presented clinical 
stability for such; when they needed oxygen therapy, it was 
performed using a low-flow system (nasal catheter, face 
mask with reservoir, tracheostomy mask); spontaneous 
prone was also used, in which the patient lay in the frontal 
decubitus position for at least 1h. In the supine position, 
the head was elevated between 30° and 45°. In the prone 
position, the head was elevated between 10° and 20°. 
Mobility activities were categorized as complete bed 
restriction; passive kinesiotherapy (the physiotherapists 
passively mobilized the wrist, elbow, shoulder, hip, knee 
and ankle joints, stretching and positioning the individual 
to bed); active kinesiotherapy (active free, active resisted or 
assisted active mobilization of the wrist, elbow, shoulder, 
hip, knee and ankle joints, dynamic or static global 
stretches, trunk control work); assisted or active sitting 
out of bed; standing; and walking.

Study outcomes
The primary outcome was in-ICU mortality as well as 

admission functional assessments of MRC and IMS scores. 
A standardized census was conducted at the rehabilitation 
center by the principal investigator through the medical 
information system. In-ICU mortality was calculated 
from the admission date and confirmed using electronic 
medical records. The study only considered deaths due to 
COVID-19 or complications resulting from it.

Data cleaning and feature engineering methods
The initial dataset contained 108 patients and 72 

features. Patients with less than 80% of the features 
available were excluded, reducing the dataset to 103 
patients. Features with less than 80% availability were 
removed, leaving 62 features. Certain features that 
directly predicted outcomes, such as ICU discharge dates 
equal to death dates, were excluded. Additional features 
were synthesized, including patient age from birthdates, 
ICU length of stay from admission and discharge dates, 
and categorical variables such as “systemic arterial 
hypertension.” Missing categorical data were imputed 
with the “Missing” category, while missing numeric data 
were replaced with median values. This strategy aimed to 
preserve the original data distribution and minimize the 
introduction of bias during modeling.

Machine learning methods
Five classifier algorithms were selected to evaluate 

predictive performance for in-ICU mortality among 
patients with cardiovascular diseases and COVID-19. The 
first algorithm, Logistic Regression (LR), uses maximum 
likelihood estimation to predict binary outcomes. 
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The second, Decision Tree (DT), constructs a tree-like model 
of decisions based on data features to predict outcomes. 
Random Forest (RF), the third algorithm, employs an 
ensemble of decision trees to enhance prediction accuracy 
and reduce overfitting20. The fourth algorithm, CatBoost 
(CB), optimizes boosting algorithms for categorical data21. 
Finally, the Explainable Boosting Machine (EBM) combines 
machine learning interpretability and high predictive 
accuracy22.

Hyperparameter tuning and model evaluation
Hyperparameters for each algorithm were optimized 

using a Tree-structured Parzen Estimator (TPE) from the 
Optuna framework23. Stratified K-fold cross-validation 
(K=5) was employed to ensure robust evaluation, balancing 
bias and variance in model performance estimates given 
the moderate sample size. The primary metric for model 
performance was the area under the receiver operating 
characteristic curve (AUC). Secondary metrics included 
sensitivity and specificity.

Data augmentation methods
To address class imbalances and improve model 

generalization, the Synthetic Minority Oversampling 
Technique for Nominal and Continuous features (SMOTE-
NC) was used during training24. SMOTE-NC generates 
synthetic samples for minority classes while preserving 
the original feature space.

Attribute relevance analysis
Attribute relevance analysis was conducted to 

identify the most influential features for predicting 
mortality. Techniques included Weight of Evidence 
(WoE) and Information Value (IV) to quantify feature 
importance. Features with high IV scores were prioritized 
for model training. Explainable Artificial Intelligence (XAI) 
methods, such as Shapley Additive Explanations (SHAP), 
were employed to interpret feature contributions to 
model predictions.

Chi-square, Cramér’s V, and weight of evidence
Chi-Square tests were used to evaluate the association 

between categorical features and the outcome variable 
(in-ICU mortality). A p-value threshold of <0.05 was 
used to determine statistical significance. Cramér’s V 
was calculated to measure the strength of association 
for significant relationships, with values ranging from 
0 (no association) to 1 (perfect association). Weight of 
Evidence (WoE) was applied to transform categorical 
variables into numeric representations based on their 
relationship with the target variable. Variables with high 
predictive value were identified through Information 

Value (IV) analysis, where IV scores above 0.3 indicated 
strong predictive power.

Explainable artificial intelligence
It is hard to mathematically define interpretability, but 

there are non-mathematical definitions: interpretability 
is the degree to which a human can understand the 
cause of a decision25. Another one is interpretability is 
the degree to which a human can consistently predict 
the model’s result26. Explainable Artificial Intelligence 
(XAI) methodologies were applied to enhance the 
interpretability of machine learning model predictions. 
Shapley Additive Explanations (SHAP) values were 
used to attribute contributions of individual features 
to predicted outcomes, offering insights into how 
different clinical and functional features influenced 
in-ICU mortality. For instance, mobility features such 
as IMS scores and active physiotherapy interventions 
were consistently identified as protective factors, 
while indicators of disease severity, such as PaO2 
levels and sedation status, increased mortality risk. XAI 
visualizations provided by SHAP summary plots and 
dependence plots enabled clinicians to understand 
model decision-making processes and integrate findings 
into patient care strategies.

All analyses were conducted using Python programming 
language, with the use of Scikit-learn, Optuna, and SHAP 
libraries.

Machine learning experiments
Experiment 1 consisted of classifying whether the 

patient died or not based only on the admission data. 
The dataset is divided into train and test sets. The train 
set was used to train the models and find the best 
hyperparameters, and the test set was used to evaluate 
the generalization performance. Hyperparameters 
and their search range are described in Table  1. 
Due to the small train set, we applied SMOTE to add 
synthetic data. The categorical features we encoded 
using the WoE and numerical features were scaled to 
have 0 mean and variance equal to 1. We included the 
ventilation treatments in the patient admission data for 
Experiment 2. The preprocessing and feature engineering 
were the same as in Experiment 1. For Experiment 3, 
mobility treatments were added. Finally, in Experiment 4, 
we exploit attribute relevance analysis. It serves two 
crucial purposes: first, identifying the variables that 
have the most prominent effects on the target variable; 
second, figuring out how the most significant predictor 
and the target variable are related. This analysis can 
be performed using the information value and weight 
of evidence technique. We used it to select the most 
suitable mobility and ventilation treatments to add to 
patient admittance data.
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RESULTS

Sample characteristics

Table  2  compares cl inical  and demographic 
characteristics of sample. Patients with COVID-19 had 
significantly longer ICU stays (14.5 vs. 6.2 days, p = 0.0071), 
higher body mass (81.9 vs. 72.3 kg, p = 0.0101), and taller 
stature (1.7 vs. 1.6 m, p = 0.0061). Functional outcomes 
on admission showed COVID-19+ patients had higher 

MRC and IMS scores (48.3 vs. 43.8, p = 0.0211; 5.5 vs. 3.9, 
p = 0.0391, respectively). COVID-19+ patients were younger 
on average (68.1 vs. 80.4 years, p < 0.001). Leukocyte counts 
were lower in the COVID-19+ group (9564.6 vs. 13,456.8 per 
mcL, p = 0.0021), and PCO2 and bicarbonate levels were 
also reduced (p < 0.001, p = 0.0441, respectively). Regarding 
comorbidities, congestive heart failure (p = 0.0402) and 
atrial fibrillation (p = 0.0152) were more prevalent in the 
COVID-19− group. Sedation use was more frequent among 
COVID-19+ patients (52.4% vs. 29.3%, p = 0.0202).

Table 1. Hyperparameter and their search range.

Model Hyperparameter Searching range

Decision Tree

max_depth 1 – 10

min_samples_split 2 – 40

min_samples_leaf 1 – 20

Logistic Regression

C 1E-4 – 100.0

penalty ‘l2’

max_iter 1000

class_weights ‘balanced’

Explainable Boosting Machine

max_depth 1 – 10

max_bins 10 – 100

learning_rate 0.001 – 1.0

interactions 1 – 10

max_leaves 10 – 1000

Random Forest
max_depth 1 – 10

n_estimators 10 – 1000

CatBoost

depth 1 – 10

border_count 1 – 255

iterations 10 – 1000

learning_rate 0.01 – 1.0

random_strength 1E-9 – 10.0

l2_leaf_reg 2.0 – 30.0

bagging _temperature 0.0 – 1.0

Source: The authors.
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Table 2. Characteristics of the studied sample.

COVID-19− COVID-19+ Total
p Value

(n = 58) (n = 42) (n = 100)

Length of ICU stay, days 6.2 (6.8) 14.5 (21.7) 9.7 (15.5) 0.0071
Glasgow, score 13 (3.0) 14 (1.5) 14 (2.5) 0.0561

APACHE II, score 30.3 (4.8) 30.2 (4.9) 30.2 (4.8) 0.9171
Admission functional outcomes

MRC, score 43.8 (10.4) 48.3 (7.9) 45.7 (9.6) 0.0211
IMS, score 3.9 (3.8) 5.5 (4.0) 4.6 (3.9) 0.0391

Age, years 80.4 (13.4) 68.1 (16.2) 75.2 (15.8) <0.0011

Sex, n 0.1472
Female 32 (55.2%) 17 (40.5%) 49 (49.0%)

Male 26 (44.8%) 25 (59.5%) 51 (51.0%)
Body mass, kg 72.3 (17.4) 81.9 (18.7) 76.3 (18.5) 0.0101
Body height, m 1.6 (0.1) 1.7 (0.1) 1.7 (0.1) 0.0061

Body mass index, kg/m2 26.4 (4.7) 28.2 (5.4) 27.1 (5.1) 0.0791
Body mass index category, n (%) 0.4512

Thin 3 (5.2%) 1 (2.4%) 4 (4.0%)
Eutrophic 19 (32.8%) 11 (26.2%) 30 (30.0%)

Overweight 25 (43.1%) 15 (35.7%) 40 (40.0%)
Obesity I 7 (12.1%) 10 (23.8%) 17 (17.0%)
Obesity II 4 (6.9%) 4 (9.5%) 8 (8.0%)
Obesity III 0 (0.0%) 1 (2.4%) 1 (1.0%)

Vital signs
Heart rate, beat/min 84.4 (21.8) 85.5 (17.6) 84.9 (20.0) 0.7941

Respiratory rate, cycle/min 21.9 (5.5) 21.9 (5.3) 21.9 (5.4) 0.9961
Systolic pressure, mmHg 137.5 (26.1) 129.5 (25.0) 134.1 (25.8) 0.1271

Diastolic pressure, mmHg 76.9 (18.8) 75.2 (16.6) 76.2 (17.9) 0.6431
Pulse pressure, mmHg 60.6 (23.1) 54.3 (17.4) 58.0 (21.0) 0.1391
Mean pressure, mmHg 97.1 (18.6) 93.3 (18.0) 95.5 (18.3) 0.3111
Laboratory exams

Sodium, mEq/L 135.8 (6.4) 135.5 (6.4) 135.6 (6.3) 0.8131
Potassium, mEq/L 4.3 (0.8) 4.2 (0.8) 4.3 (0.8) 0.5531

Urea, mg/L 69.6 (56.0) 71.5 (69.7) 70.4 (61.8) 0.8821
Creatinine, mg/L 1.7 (1.8) 1.5 (1.3) 1.6 (1.6) 0.6541

Lactate, mg/L 1.9 (1.3) 1.6 (0.9) 1.7 (1.1) 0.1891
Reactive-C protein, CP/μL 75.9 (90.7) 108.8 (96.0) 89.7 (93.9) 0.0841

Hemoglobin, g/dL 13.0 (2.2) 12.7 (2.3) 12.9 (2.2) 0.5821
Hematocrit, % 37.6 (6.2) 37.2 (7.2) 37.4 (6.6) 0.7751

Leukocyte, per mcL 13,456.8 (6443.9) 9564.6 (5472.5) 11822.1 (6327.6) 0.0021
Platelets, per mcL 193,869 (80,822) 177,255 (73,991) 186,891 (78,078) 0.2961
Lymphocytes, % 15.5 (9.3) 15.7 (9.2) 15.6 (9.2) 0.9221
Neutrophiles, % 78.4 (10.3) 77.4 (11.1) 78.0 (10.6) 0.6661

Gasometry
pH 7.4 (0.1) 7.4 (0.1) 7.4 (0.1) 0.0591

PCO2, mmHg 37.7 (8.5) 31.7 (6.5) 35.2 (8.2) <0.0011

Bicarbonate, mEq/L 23.8 (4.9) 21.9 (4.5) 23.0 (4.8) 0.0441
PaO2, mmHg 100.2 (43.6) 89.4 (38.6) 95.7 (41.7) 0.2031

Base excess, mEq/L −0.5 (5.3) −1.5 (5.1) −0.9 (5.2) 0.3341
O2 saturation, % 95.1 (5.0) 93.9 (6.0) 94.6 (5.4) 0.2891

Comorbidities, n (%)
Hypertension 55 (94.8%) 36 (85.7%) 91 (91.0%) 0.1162

Stroke 15 (25.9%) 7 (16.7%) 22 (22.0%) 0.2732
Coronary artery disease 14 (24.1%) 7 (16.7%) 21 (21.0%) 0.3652
Congestive heart failure 13 (22.4%) 3 (7.1%) 16 (16.0%) 0.0402

Atrial fibrillation 13 (22.4%) 2 (4.8%) 15 (15.0%) 0.0152
Drugs, n (%)

Vasoactive drug 20 (34.5%) 22 (52.4%) 42 (42.0%) 0.0732
Sedation 17 (29.3%) 22 (52.4%) 39 (39.0%) 0.0202

Data shown as mean (SD) or absolute frequency (relative frequency %). 1Linear Model analysis of variance; 2Pearson’s Chi-squared test. APACHE: acute 
physiology and chronic health evaluation; PaO2: partial pressure of oxygen. Bold formatting represents grouped variables. Italic formatting represents 
individual variables within a group.
Source: The authors.
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Experiment 1
Table 3 summarizes the results of Experiment 1, which 

evaluates the performance of machine learning models 
using only patient admission data. The table includes 
the Area Under the ROC Curve (AUC), the Standard Error 
(SE), and the 95% Confidence Interval (95% CI) for each 
classifier. None of the models achieved an AUC greater 
than 0.9, indicating limited predictive performance using 
admission data alone.

Experiment 2
Table  4 presents the results of Experiment 2, which 

examines the performance of machine learning models 
incorporating patient admission data and ventilation-related 
features. The table highlights the AUC, SE, and 95% CI for each 
classifier. While there is a slight improvement in the AUC from 
0.88 to 0.89, no model surpasses the AUC threshold of 0.9, 
suggesting incremental predictive enhancements with the 
addition of ventilation-related features.

Table 3. Performance of machine learning models using only patient admission data.

Sensitivity (%) Specificity (%) Area under the curve

CatBoost
85.7 83.9 0.88 (0.05)

(70.7 - 100.7) (70.9 - 96.8) (0.78 - 0.98)

Random Forest
85.7 83.9 0.88 (0.05)

(70.7 - 100.7) (70.9 - 96.8) (0.77 - 0.98)

Explainable Boosting Machine
85.7 80.6 0.86 (0.06)

(70.7 - 100.7) (66.7 - 94.6) (0.75 - 0.97)

Logistic Regression
81.0 77.4 0.83 (0.06)

(64.2 - 97.7) (62.7 - 92.1) (0.71 - 0.95)

Decision Tree
76.2 83.9 0.80 (0.07)

(58.0 - 94.4) (70.9 - 96.8) (0.67 - 0.93)

Performance metrics include sensitivity (true positive rate), specificity (true negative rate), and area under the receiver operating characteristic curve 
(AUC). All metrics are presented with their respective 95% confidence intervals (CI). Machine learning algorithms evaluated include: CatBoost 
(Categorical Boosting), Random Forest, Logistic Regression, and Decision Tree.
Source: The authors.

Table 4. Performance of machine learning models using patient admission data plus the ventilation-related features.

Sensitivity (%) Specificity (%) Area under the curve

Random Forest 85.7 83.9 0.89 (0.05)

(70.7 - 100.7) (70.9 - 96.8) (0.79 - 0.99)

Explainable Boosting Machine 85.7 80.6 0.88 (0.05)

(70.7 - 100.7) (66.7 - 94.6) (0.78 - 0.98)

Logistic Regression 85.7 87.1 0.86 (0.06)

(70.7 - 100.7) (75.3 - 98.9) (0.75 - 0.97)

CatBoost 90.5 77.4 0.86 (0.06)

(77.9 - 103.0) (62.7 - 92.1) (0.75 - 0.97)

Decision Tree 76.2 83.9 0.85 (0.06)

(58.0 - 94.4) (70.9 - 96.8) (0.73 - 0.96)

Performance metrics include sensitivity (true positive rate), specificity (true negative rate), and area under the receiver operating characteristic 
curve (AUC). All metrics are presented with their respective 95% confidence intervals (CI). Machine learning algorithms evaluated include: CatBoost 
(Categorical Boosting), Random Forest, Logistic Regression, and Decision Tree.
Source: The authors.
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Experiment 3
Table  5 shows the results of Experiment 3, which 

evaluates machine learning models using patient 
admission data combined with mobility-related features. 
The inclusion of mobility-related features enables the (EBM 
to achieve an AUC of 0.92, surpassing the 0.9 threshold. 
The top six critical features identified are sedation, passive 
kinesiotherapy, vasoactive drugs, sitting, IMS at admission, 
and sitting (repeated due to interaction effects). EBM’s 
feature importance analysis reveals significant interactions 
among features, such as SatO2*Sitting, Sedation*IMS 
at Admission, PaO2*Sitting, Sedation*Age, and Passive 
Kinesiotherapy*Active Kinesiotherapy*Vasoactive Drugs.

Experiment 4
Table 6 provides the results of IV and SS interpretations 

for ventilation-related features. Features with IV > 0.1 are 
considered to have medium predictive power. The most 
predictive features include invasive mechanical ventilation, 
mechanical ventilation in the prone position, and 
non-invasive mechanical ventilation. While IV identifies 

feature importance, WoE analysis reveals that performing 
these procedures is associated with patient mortality.

Table 7 summarizes the IV and SS interpretations for 
mobility-related features. Predictive features include sitting, 
walking, active physiotherapy, passive kinesiotherapy, and 
restricted mobility. WoE analysis indicates that sitting, 
walking, and active kinesiotherapy are associated with ICU 
discharge, whereas passive kinesiotherapy and restricted 
mobility correlate with ICU mortality.

Table  8  displays the results of Experiment 4, 
which evaluates machine learning models using 
patient admission data enriched with mobility-related 
features. The best model achieves an AUC of 0.92, with 
critical features identified as passive kinesiotherapy, 
sedation, invasive mechanical ventilation, vasoactive 
drugs, sitting, and walking. EBM, an intrinsically 
interpretable model, also provides superior accuracy 
(AUC > 0.9). EBM’s global explanation highlights key feature 
interactions, including PaO2*Sitting, Sitting*Admission 
IMS, Hemoglobin*Sedation, COVID-19*Sitting, and 
Leucocytes*Passive Kinesiotherapy.

Table 5. Performance of machine learning models using patient admission data plus the mobility-related features.

Sensitivity (%) Specificity (%) Area under the curve

Random Forest 90.5 83.9 0.92 (0.04)

(77.9 - 103.0) (70.9 - 96.8) (0.83 - 1.01)

CatBoost 85.7 87.1 0.92 (0.04)

(70.7 - 100.7) (75.3 - 98.9) (0.83 - 1.00)

Explainable Boosting Machine 90.5 83.9 0.90 (0.05)

(77.9 - 103.0) (70.9 - 96.8) (0.81 - 1.00)

Logistic Regression 81.0 87.1 0.90 (0.05)

(64.2 - 97.7) (75.3 - 98.9) (0.80 - 0.99)

Decision Tree 76.2 83.9 0.88 (0.05)

(58.0 - 94.4) (70.9 - 96.8) (0.77 - 0.98)

Performance metrics include sensitivity (true positive rate), specificity (true negative rate), and area under the receiver operating characteristic 
curve (AUC). All metrics are presented with their respective 95% confidence intervals (CI). Machine learning algorithms evaluated include: CatBoost 
(Categorical Boosting), Random Forest, Logistic Regression, and Decision Tree.
Source: The authors.

Table 6. Attribute relevance analysis ventilation-related treatment on Experiment 4.

Feature IV p-value Effect size IV interpretation SS interpretation

Invasive mechanical ventilation 5.191 1.18 e-34 0.87 very strong very strong

Mechanical ventilation in prone 0.607 8.59 e-07 0.34 very strong medium

Non-invasive ventilation 0.413 6.28e-05 0.28 strong medium

Spontaneous breath in prone 0.035 4.13e-01 0.06 weak useless

Oxygen therapy 0.004 1.00e-01 0.11 useless weak

Alveolar recruitment 0.002 1.00 0.00 useless useless

IV: Information Value; SS: Strength Score. Interpretations: very strong (IV > 0.5), strong (IV 0.3–0.5), medium (IV 0.1–0.3), weak (IV < 0.1).
Source: The authors.
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DISCUSSION
Our analysis revealed that inpatient exposure to invasive 

mechanical ventilation, prone positioning, and passive 
kinesiotherapy were strong predictors of in-ICU mortality, 
while active mobilizations such as kinesiotherapy, standing, 
and walking were associated with ICU discharge. These 
findings have important clinical implications, reinforcing 
the role of early active mobilization to improve survival 
outcomes among critically ill cardiovascular patients with 
COVID-19. Furthermore, the integration of explainable 
machine learning models enhanced the precision and 
interpretability of these results, achieving high predictive 
accuracy (AUC ≥ 0.9) when mobility-related features were 
included or when treatments were selected based on 
attribute relevance analysis (Experiment 4). These findings 
expand upon our previous study,12 providing deeper 
insights into how functional and therapeutic factors impact 
patient outcomes.

Building on these findings, Experiment 4 specifically 
highlighted the Explainable Boosting Machine (EBM) model, 
emphasizing the importance of passive kinesiotherapy, 

sedation, and sitting activities. Significant interactions 
identified by the model included PaO2*sitting, sedation*IMS 
admission, hemoglobin*sedation, COVID-19*sitting, and 
leucocytes*passive kinesiotherapy. Although EBM did not 
achieve the best overall result, its ability to assign importance 
to individual features and their interactions makes it valuable 
for further analysis. Similarly, Experiment 3 corroborated 
these observations, as the EBM model emphasized the 
significance of sedation, sitting, and passive kinesiotherapy, 
further identifying key interaction effects among clinical 
features. Additionally, it identified interactions such as 
sedation*IMS admission, sitting*SatO2, sitting*PaO2, and 
sedation*age, which warrant further investigation.

These findings are consistent with international 
studies that have identified demographic and clinical risk 
factors for hospitalization and mortality in patients with 
cardiovascular diseases (CVD) and COVID-19. These risk 
factors include older age, overweight, low lymphocyte 
count, and pre-existing comorbidities6-8,27-29. In Brazil, 
the aging population helps explain the predominance 
of non-communicable chronic diseases as the leading 
causes of hospitalization and death in older individuals30. 

Table 7. Attribute relevance analysis of mobility-related treatment in Experiment 4.

Feature IV p-value Effect size IV interpretation SS interpretation

Sitting 3.950 2.01e-26 0.75 very strong very strong

Walking 2.577 2.00e-16 0.58 very strong strong

Active kinesiotherapy 2.287 6.86e-21 0.66 very strong very strong

Passive kinesiotherapy 1.945 1.56e-32 0.84 very strong very strong

Restricted mobility 0.226 1.72e-09 0.42 medium strong

IV: Information Value; SS: Strength Score. Interpretations: very strong (IV > 0.5), strong (IV 0.3–0.5), medium (IV 0.1–0.3), weak (IV < 0.1).
Source: The authors.

Table 8. Performance of machine learning models using patient admission data plus the mobility-related features.

Sensitivity (%) Specificity (%) Area under the curve

Random Forest 90.5 83.9 0.92 (0.04)

(77.9 - 103.0) (70.9 - 96.8) (0.83 - 1.00)

Explainable Boosting Machine 90.5 83.9 0.90 (0.05)

(77.9 - 103.0) (70.9 - 96.8) (0.81 - 1.00)

Logistic Regression 90.5 87.1 0.90 (0.05)

(77.9 - 103.0) (75.3 - 98.9) (0.81 - 1.00)

CatBoost 90.5 87.1 0.89 (0.05)

(77.9 - 103.0) (75.3 - 98.9) (0.79 - 0.99)

Decision Tree 76.2 83.9 0.82 (0.06)

(58.0 - 94.4) (70.9 - 96.8) (0.69 - 0.94)

Performance metrics include sensitivity (true positive rate), specificity (true negative rate), and area under the receiver operating characteristic 
curve (AUC). All metrics are presented with their respective 95% confidence intervals (CI). Machine learning algorithms evaluated include: CatBoost 
(Categorical Boosting), Random Forest, Logistic Regression, and Decision Tree.
Source: The authors.
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The overall length of stay in our sample was similar to that in 
other studies of patients with COVID-19, ranging from less 
than one week to two months31. A retrospective study of 88 
older adults hospitalized for COVID-19 in an ICU in Brazil 
reported hypertension as the most common comorbidity, 
with a median ICU stay of 23 days (range: 4–38)32. The 
link between pre-existing CVDs, worse outcomes, and 
increased risk of death in patients with COVID-19 is further 
supported by our findings33. Together, these results support 
the external validity of our findings, while highlighting 
the significant role of demographic characteristics and 
COVID-19 diagnosis in predicting in-ICU death in this 
population.

Emerging clinical algorithms34 and consensus 
guidelines35 for the respiratory management of COVID-19 
patients were developed. Our findings contribute to 
these efforts by suggesting that inpatients with CVD and 
COVID-19 were more likely to be exposed to ventilatory 
support techniques, particularly alveolar recruitment 
(concomitant with invasive ventilation) and awake 
prone positioning. While the role of early mobilization in 
COVID-19 patients is already acknowledged35,36, algorithms 
incorporating mobility interventions for this population 
remain scarce. Although similar exposure to all mobility 
interventions reinforces the general need for early 
mobilization in hospitalized patients37, the higher exposure 
to passive kinesiotherapy in COVID-19 patients may serve 
as a proxy for disease severity in this group.

In line with this, our results revealed that in-ICU 
mortality was higher among patients who tested positive 
for COVID-19, were exposed to invasive mechanical 
ventilation, or had lower mobility scores at ICU admission. 
These characteristics may serve as proxies for disease 
severity. Interestingly, exposure to physiotherapy 
interventions had two distinct effects on in-ICU mortality. 
While restricted mobility and passive kinesiotherapy were 
associated with in-ICU death, active mobilizations (such 
as kinesiotherapy, standing, or walking) were linked to 
in-ICU discharge. This finding is consistent with previous 
studies showing improved mobility at hospital discharge 
and a higher likelihood of returning home with increased 
frequency and longer duration of physical therapy visits 
for COVID-19 patients in acute care hospitals11. Given that 
the interventions investigated here can be viewed as part 
of a continuum of recovery—progressing from restricted 
mobility to passive kinesiotherapy and eventually to active 
kinesiotherapy—it can be argued that transitioning from 
“passive to active kinesiotherapy” may be a critical factor 
influencing clinical outcomes. Further studies are needed 
to explore whether different sequences of physiotherapy 
interventions are associated with in-ICU mortality and, if 
so, to determine which specific sequence is most likely to 
lead to in-ICU discharge.

Despite the strengths of the current study, limitations 
should be acknowledged. Due to its retrospective design, 
data regarding functional outcomes at admission were 

missing for some participants. Additionally, physiotherapy 
interventions were delivered based on the clinical decisions 
of the rehabilitation team, which introduces variability. 
The sample, derived from a single center during the 
initial “wave” of COVID-19 cases in Brazil38, may not be 
representative of the broader Brazilian healthcare system, 
warranting further investigation.

CONCLUSION
Functional outcomes at ICU admission and exposure 

to routine physiotherapy interventions are significantly 
associated with in-ICU mortality in older adults with 
cardiovascular diseases. Machine learning enabled 
the identification of key predictive features and their 
interactions, achieving high predictive accuracy. Future 
studies should further explore the application of machine 
learning to validate and refine these findings across diverse 
populations and settings.
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