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Abstract

Background: Cardiovascular diseases are a leading cause of mortality worldwide, with the
COVID-19 pandemic intensifying their impact on intensive care unit outcomes. Functional
impairments and reduced mobility among critically ill cardiovascular patients are linked to
adverse outcomes, but their predictive value for mortality during intensive care hospitalization
with COVID-19 remains underexplored. Aim: This study employs machine learning and
explainable artificial intelligence to identify key predictors and optimize intervention
strategies. Methods: This retrospective study analyzed data from 100 critically ill patients
with cardiovascular diseases and COVID-19 admitted to a private hospital in Brazil. Functional
assessments included scores of global muscle strength and mobility at admission. Machine
learning models—Logistic Regression, Decision Tree, Random Forest, CatBoost, and
Explainable Boosting Machine—were developed in Python. Interpretability analyses were
performed using Shapley Additive Explanations to determine the most relevant predictors.
Results: The best-performing model, Random Forest, achieved a sensitivity of 90.5% and
specificity of 83.9%, with an accuracy of 0.92 (95% confidence interval: 0.83-1.00). Passive
kinesiotherapy, restricted mobility, and invasive mechanical ventilation were strongly
associated with in-hospital mortality, while active mobilizations such as walking and standing
predicted better survival outcomes. Feature relevance analysis revealed critical feature
interactions involving oxygenation levels, sedation, and mobility variables on mortality risks.
Conclusion: Machine learning approaches identified predictors of mortality and reinforced
the protective effects of active physiotherapy interventions for critically ill cardiovascular
patients with COVID-19. These findings support the application of data-driven strategies to
optimize rehabilitation practices in intensive care units and suggest the need for validation
in larger populations.

Keywords: Critical care; Physical Therapy; Machine Learning.

Resumo

Introducdo: As doencas cardiovasculares sdo uma das principais causas de mortalidade em
todo o mundo, com a pandemia de COVID-19 intensificando seu impacto nos desfechos em
unidades de terapia intensiva. Comprometimentos funcionais e mobilidade reduzida em
pacientes criticos com doenca cardiovascular estdo associados a desfechos adversos, mas
seu valor preditivo para mortalidade durante a internacdo na unidade de terapia intensiva
devido a COVID-19 ainda ndo foi explorado. Objetivo: Este estudo utiliza aprendizado de
maquina e inteligéncia artificial explicavel (XAl) para identificar os principais preditores e
otimizar estratégias de intervencdo. Métodos: Este estudo retrospectivo analisou dados de
100 pacientes criticos com doencas cardiovasculares e COVID-19 internados em um hospital
privado no Brazil. As avaliagdes funcionais incluiram escores de for¢a muscular global e
mobilidade no momento da admisséo. Modelos de aprendizado de maquina—Regressado
Logistica, Arvore de Decisdo, Random Forest, CatBoost e Explainable Boosting Machine—foram
desenvolvidos em Python. Ainterpretacdo dos modelos foi realizada com base na técnica de
Shapley Additive Explanations para identificar os preditores mais relevantes. Resultados:
O modelo com melhor desempenho, Random Forest, obteve uma sensibilidade de 90,5%
e especificidade de 83,9%, com acurdcia de 0,92 (intervalo de confianca de 95%: 0,83-1,00).
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Explainable machine learning reveals key predictors of ICU mortality in COVID-19:
functional outcomes and physiotherapy interventions in cardiovascular patients
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A cinesioterapia passiva, mobilidade restrita e ventilagdo mecanica invasiva foram fortemente
associadas a mortalidade hospitalar, enquanto mobiliza¢8es ativas, como caminhar e
ficar em pé, previram melhores desfechos de sobrevivéncia. A analise de relevancia das
variaveis revelou interac¢des criticas envolvendo niveis de oxigenacdo, sedacdo e métricas de
mobilidade. Conclusao: Técnicas de aprendizado de identificaram preditores de mortalidade
e reforcaram o efeito protetor das intervencdes fisioterapéuticas ativas em pacientes criticos
com doenga cardiovascular e COVID-19. Esses achados apoiam adog¢do de estratégias de
reabilitacdo orientadas por dados clinicos em unidades de terapia intensiva, com necessidade
de validagdo em popula¢des maiores.

Palavras-chave: Cuidado Critico; Fisioterapia; Aprendizado de Maquina.

INTRODUCTION

Cardiovascular diseases (CVD) remain the leading
cause of death globally, accounting for an estimated 31%
of all mortalities, or about 17.9 million deaths annually’.
In Brazil, CVD contributed to 267,635 deaths in 1990 and
424,058 deaths in 20152 Despite global trends indicating a
reduction in CVD-related mortality risks, recent data show
a plateauing of this decline in Brazil*#. Population aging
and therapeutic advancements have extended survival
rates but increased the prevalence of CVD and related
hospitalizations®.

The emergence of the new coronavirus disease
(COVID-19) pandemic further exacerbated the burden of
CVD. Patients with pre-existing CVD were found to have
higher susceptibility to severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infections, longer hospital
stays, and increased mortality rates®®. In ICU settings, older
adults often experience functional declines, with reduced
musculoskeletal strength and mobility contributing to
poorer outcomes®'°.

Patients with COVID-19 can improve their mobility
at hospital discharge and have a higher probability of
discharging home with increased frequency and longer
mean duration of physiotherapy visits''. In a previous
study, we found that admission-impaired functional
characteristics and specific physiotherapy interventions
were associated with a higher risk of in-ICU death’2.
However, the specific impacts of functional status and
physiotherapy interventions in CVD patients hospitalized
with COVID-19 remained insufficiently explored.

Machine learning has been applied in predicting
COVID-19 outcomes. Dan et al.’® demonstrated the utility
of artificial neural networks in predicting ICU admissions
based on clinical severity scores and white blood cell
counts. Similarly, Akram et al.”* employed discrete wavelet
transform and extended segmentation-based fractal
texture analysis methods to extract relevant features
from CT images and Naive Bayes classifiers to distinguish
COVID-19 from other respiratory diseases. Exploratory
Spatial Data Analysis (ESDA) by Scarpone et al.’ revealed
significant socio-economic and infrastructural variables
influencing COVID-19 case distributions. Cheng et al.’®
utilized Random Forest algorithms to predict ICU transfers
in COVID-19 patients, achieving predictive accuracy of 90%.
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Building on the findings of our previous study'?,
which highlighted the association between functional
characteristics and physiotherapy interventions with
ICU outcomes in patients with CVD, this study employs
advanced machine learning models and explainable
artificial intelligence to revisit and expand upon these
findings. We aim to provide deeper insights into their
association with in-ICU mortality in older adults with CVD
and COVID-19. Furthermore, this study introduces the
novel application of attribute machine learning analysis
to evaluate the impact of physiotherapy interventions.

METHODS

Ethics

The study protocol follows national resolution No.
466/2012 and the World Medical Association Declaration
of Helsinki. The Institutional Ethics Committee approved
this research protocol (No. 19966919.7.0000.5235), waiving
the informed consent form because patient data were de-
identified before subsequent analysis and the research
protocol did not affect the hospital's treatment protocols
of the inpatients.

Study design and reporting

This retrospective, single-center study analyzed data
from February to November 2020, collected from ICU
patients at a private hospital in Curitiba, Parana, Brazil.
Inclusion criteria encompassed CVD diagnosis confirmed
by clinical and laboratory tests, functional assessment by
a physiotherapist, and SARS-CoV-2 testing at admission.
Hospitalizations were included if ICU stays exceeded
12 hours, considering a minimum time necessary for an
initial physiotherapeutic evaluation and to ensure clinical
stability for functional assessments. Re-admissions within
the study period were excluded. Data were obtained by
the principal investigator through information previously
contained in electronic medical records, examination
reports, and notes of the health professional staff
involved in the care of the patients. This study is reported
following the REporting of studies Conducted using
Observational Routinely-collected health Data (RECORD)
Statement'’.
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No prospective sample size calculation was performed
for this secondary analysis. The present study used
data from a previous retrospective cohort'?, whose
sample size calculation determined that a minimum of
96 participants would be required to estimate overall
risk with a margin of error < 10% and a true outcome
proportion equal to 50%.

Setting and participants

This study retrospectively analyzed all data from
patients consecutively hospitalized at the ICU. Patients
who had a primary diagnosis of CVD after a complete
clinical exam and laboratory testing—including
laboratory blood tests, electrocardiogram, blood
pressure, and/or echocardiography as prescribed—
admission assessment by a physiotherapist, and tested
for SARS-CoV-2 infection at admission were included.
Length of ICU stay was defined as admissions exceeding
12 hours. Re-admissions to the ICU within the study
period were excluded from the analysis.

Clinical measurements

All admission data were collected within <24 h of ICU
hospitalization. Data were collected retrospectively from
electronic medical recordings regarding demographics,
vital signs, laboratory, gasometry, presence of CVD
and comorbidities, and drugs in continuous use. Date
of hospital admission and discharge from the ICU or
death were collected for computing the total length of
ICU stay. Overall muscle strength was assessed by the
Medical Research Council (MRC) scale that uses a 6-point
scale of 6 muscle groups bilaterally. Representative
scores comprised the sum of points observed for each
muscle group, ranging from 0 (no muscle activity) to
30 (maximal muscle strength)®. Mobility was assessed
by the ICU Mobility Scale (IMS). The score varies between
0 expressing low mobility (patient who only performs
passive exercises in bed) and 10 expressing high mobility
(the patient who presents independent walking, without
assistance)'.

Physiotherapy interventions

Exposure to each routine physiotherapy intervention
was defined as using a given therapeutic resource at
any time during the total length of stay in the ICU, thus
registered as dichotomous variables (‘yes' = 1; ‘'no’ = 0).
Ventilatory support was characterized by the use of non-
invasive mechanical ventilation, through an orofacial or
facial interface connected to the mechanical ventilator
in one (CPAP) or two (BiPAP) pressure levels ventilation
modes; or invasive ventilatory support, in which the
patient was connected through an orotracheal or tracheal
prosthesis in controlled ventilatory modes, controlled
assistance and/or spontaneous; patients diagnosed with
acute respiratory distress syndrome, even when COVID-19
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negative, were used protective strategy ventilatory
parameters, which may require alveolar recruitment
through the prone position or recruitment through the
gradual increase of PEEP up to 35 cmH,0 and subsequent
titration of ideal PEEP, whereas that they presented clinical
stability for such; when they needed oxygen therapy, it was
performed using a low-flow system (nasal catheter, face
mask with reservoir, tracheostomy mask); spontaneous
prone was also used, in which the patient lay in the frontal
decubitus position for at least 1h. In the supine position,
the head was elevated between 30° and 45°. In the prone
position, the head was elevated between 10° and 20°.
Mobility activities were categorized as complete bed
restriction; passive kinesiotherapy (the physiotherapists
passively mobilized the wrist, elbow, shoulder, hip, knee
and ankle joints, stretching and positioning the individual
to bed); active kinesiotherapy (active free, active resisted or
assisted active mobilization of the wrist, elbow, shoulder,
hip, knee and ankle joints, dynamic or static global
stretches, trunk control work); assisted or active sitting
out of bed; standing; and walking.

Study outcomes

The primary outcome was in-ICU mortality as well as
admission functional assessments of MRC and IMS scores.
A standardized census was conducted at the rehabilitation
center by the principal investigator through the medical
information system. In-ICU mortality was calculated
from the admission date and confirmed using electronic
medical records. The study only considered deaths due to
COVID-19 or complications resulting from it.

Data cleaning and feature engineering methods

The initial dataset contained 108 patients and 72
features. Patients with less than 80% of the features
available were excluded, reducing the dataset to 103
patients. Features with less than 80% availability were
removed, leaving 62 features. Certain features that
directly predicted outcomes, such as ICU discharge dates
equal to death dates, were excluded. Additional features
were synthesized, including patient age from birthdates,
ICU length of stay from admission and discharge dates,
and categorical variables such as “systemic arterial
hypertension.” Missing categorical data were imputed
with the “Missing” category, while missing numeric data
were replaced with median values. This strategy aimed to
preserve the original data distribution and minimize the
introduction of bias during modeling.

Machine learning methods

Five classifier algorithms were selected to evaluate
predictive performance for in-ICU mortality among
patients with cardiovascular diseases and COVID-19. The
first algorithm, Logistic Regression (LR), uses maximum
likelihood estimation to predict binary outcomes.
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The second, Decision Tree (DT), constructs a tree-like model
of decisions based on data features to predict outcomes.
Random Forest (RF), the third algorithm, employs an
ensemble of decision trees to enhance prediction accuracy
and reduce overfitting?°. The fourth algorithm, CatBoost
(CB), optimizes boosting algorithms for categorical data?'.
Finally, the Explainable Boosting Machine (EBM) combines
machine learning interpretability and high predictive
accuracy?.

Hyperparameter tuning and model evaluation

Hyperparameters for each algorithm were optimized
using a Tree-structured Parzen Estimator (TPE) from the
Optuna framework?. Stratified K-fold cross-validation
(K=5)was employed to ensure robust evaluation, balancing
bias and variance in model performance estimates given
the moderate sample size. The primary metric for model
performance was the area under the receiver operating
characteristic curve (AUC). Secondary metrics included
sensitivity and specificity.

Data augmentation methods

To address class imbalances and improve model
generalization, the Synthetic Minority Oversampling
Technique for Nominal and Continuous features (SMOTE-
NC) was used during training?*. SMOTE-NC generates
synthetic samples for minority classes while preserving
the original feature space.

Attribute relevance analysis

Attribute relevance analysis was conducted to
identify the most influential features for predicting
mortality. Techniques included Weight of Evidence
(WoE) and Information Value (IV) to quantify feature
importance. Features with high IV scores were prioritized
for model training. Explainable Artificial Intelligence (XAl)
methods, such as Shapley Additive Explanations (SHAP),
were employed to interpret feature contributions to
model predictions.

Chi-square, Cramér's V, and weight of evidence

Chi-Square tests were used to evaluate the association
between categorical features and the outcome variable
(in-ICU mortality). A p-value threshold of <0.05 was
used to determine statistical significance. Cramér's V
was calculated to measure the strength of association
for significant relationships, with values ranging from
0 (no association) to 1 (perfect association). Weight of
Evidence (WoE) was applied to transform categorical
variables into numeric representations based on their
relationship with the target variable. Variables with high
predictive value were identified through Information
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Value (IV) analysis, where IV scores above 0.3 indicated
strong predictive power.

Explainable artificial intelligence

Itis hard to mathematically define interpretability, but
there are non-mathematical definitions: interpretability
is the degree to which a human can understand the
cause of a decision?. Another one is interpretability is
the degree to which a human can consistently predict
the model’s result?®. Explainable Artificial Intelligence
(XAl) methodologies were applied to enhance the
interpretability of machine learning model predictions.
Shapley Additive Explanations (SHAP) values were
used to attribute contributions of individual features
to predicted outcomes, offering insights into how
different clinical and functional features influenced
in-ICU mortality. For instance, mobility features such
as IMS scores and active physiotherapy interventions
were consistently identified as protective factors,
while indicators of disease severity, such as PaO,
levels and sedation status, increased mortality risk. XAl
visualizations provided by SHAP summary plots and
dependence plots enabled clinicians to understand
model decision-making processes and integrate findings
into patient care strategies.

All analyses were conducted using Python programming
language, with the use of Scikit-learn, Optuna, and SHAP
libraries.

Machine learning experiments

Experiment 1 consisted of classifying whether the
patient died or not based only on the admission data.
The dataset is divided into train and test sets. The train
set was used to train the models and find the best
hyperparameters, and the test set was used to evaluate
the generalization performance. Hyperparameters
and their search range are described in Table 1.
Due to the small train set, we applied SMOTE to add
synthetic data. The categorical features we encoded
using the WoE and numerical features were scaled to
have 0 mean and variance equal to 1. We included the
ventilation treatments in the patient admission data for
Experiment 2. The preprocessing and feature engineering
were the same as in Experiment 1. For Experiment 3,
mobility treatments were added. Finally, in Experiment 4,
we exploit attribute relevance analysis. It serves two
crucial purposes: first, identifying the variables that
have the most prominent effects on the target variable;
second, figuring out how the most significant predictor
and the target variable are related. This analysis can
be performed using the information value and weight
of evidence technique. We used it to select the most
suitable mobility and ventilation treatments to add to
patient admittance data.
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Table 1. Hyperparameter and their search range.

C x

Model Hyperparameter Searching range
max_depth 1-10
Decision Tree min_samples_split 2-40
min_samples_leaf 1-20
C 1E-4-100.0
penalty 2"
Logistic Regression
max_iter 1000
class_weights ‘balanced’
max_depth 1-10
max_bins 10-100
Explainable Boosting Machine learning_rate 0.001-1.0
interactions 1-10
max_leaves 10 -1000
max_depth 1-10
Random Forest
n_estimators 10 -1000
depth 1-10
border_count 1-255
iterations 10 - 1000
CatBoost learning_rate 0.01-1.0
random_strength 1E-9-10.0
12_leaf_reg 2.0-30.0
bagging _temperature 0.0-1.0

Source: The authors.

RESULTS

Sample characteristics

Table 2 compares clinical and demographic
characteristics of sample. Patients with COVID-19 had
significantly longer ICU stays (14.5 vs. 6.2 days, p = 0.0071),
higher body mass (81.9 vs. 72.3 kg, p =0.0101), and taller
stature (1.7 vs. 1.6 m, p = 0.0061). Functional outcomes
on admission showed COVID-19+ patients had higher
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MRC and IMS scores (48.3 vs. 43.8, p = 0.0211; 5.5 vs. 3.9,
p =0.0391, respectively). COVID-19+ patients were younger
on average (68.1vs. 80.4 years, p <0.001). Leukocyte counts
were lower in the COVID-19+ group (9564.6 vs. 13,456.8 per
mcL, p = 0.0021), and PCO2 and bicarbonate levels were
alsoreduced (p <0.001, p =0.0441, respectively). Regarding
comorbidities, congestive heart failure (p = 0.0402) and
atrial fibrillation (p = 0.0152) were more prevalent in the
COVID-19-group. Sedation use was more frequentamong
COVID-19+ patients (52.4% vs. 29.3%, p = 0.0202).
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Table 2. Characteristics of the studied sample.

COVID-19- COVID-19+ Total
p Value
(n=58) (n=42) (n =100)
Length of ICU stay, days 6.2 (6.8) 14.5(21.7) 9.7 (15.5) 0.0071
Glasgow, score 13(3.0) 14 (1.5) 14 (2.5) 0.0561
APACHE Il, score 30.3(4.8) 30.2 (4.9) 30.2 (4.8) 0.9171
Admission functional outcomes
MRC, score 43.8(10.4) 48.3(7.9) 45.7 (9.6) 0.0211
IMS, score 3.9(3.8) 5.5 (4.0) 4.6 (3.9) 0.0391
Age, years 80.4 (13.4) 68.1(16.2) 75.2 (15.8) <0.001"
Sex, n 0.1472
Female 32 (55.2%) 17 (40.5%) 49 (49.0%)
Male 26 (44.8%) 25 (59.5%) 51 (51.0%)
Body mass, kg 72.3(17.4) 81.9(18.7) 76.3(18.5) 0.0101
Body height, m 1.6 (0.1) 1.7 (0.1) 1.7 (0.1) 0.0061
Body mass index, kg/m? 26.4(4.7) 28.2 (5.4) 27.1(5.1) 0.0791
Body mass index category, n (%) 0.4512
Thin 3(5.2%) 1(2.4%) 4 (4.0%)
Eutrophic 19 (32.8%) 11 (26.2%) 30 (30.0%)
Overweight 25 (43.1%) 15 (35.7%) 40 (40.0%)
Obesity | 7 (12.1%) 10 (23.8%) 17 (17.0%)
Obesity Il 4 (6.9%) 4 (9.5%) 8 (8.0%)
Obesity Il 0 (0.0%) 1(2.4%) 1(1.0%)
Vital signs
Heart rate, beat/min 84.4(21.8) 85.5(17.6) 84.9 (20.0) 0.7941
Respiratory rate, cycle/min 21.9(5.5) 21.9(5.3) 21.9(5.4) 0.9961
Systolic pressure, mmHg 137.5(26.1) 129.5 (25.0) 134.1 (25.8) 0.1271
Diastolic pressure, mmHg 76.9 (18.8) 75.2 (16.6) 76.2(17.9) 0.6431
Pulse pressure, mmHg 60.6 (23.1) 54.3(17.4) 58.0(21.0) 0.1391
Mean pressure, mmHg 97.1 (18.6) 93.3(18.0) 95.5(18.3) 0.3111
Laboratory exams
Sodium, mEqg/L 135.8 (6.4) 135.5(6.4) 135.6 (6.3) 0.8131
Potassium, mEq/L 4.3 (0.8) 4.2 (0.8) 4.3 (0.8) 0.5531
Urea, mg/L 69.6 (56.0) 71 .5(69.7) 70.4 (61.8) 0.8821
Creatinine, mg/L 1.7 (1.8) 5(1.3) 1.6 (1.6) 0.6541
Lactate, mg/L 1.9 (1.3) 6(0.9) 1.7 (1.1) 0.1891
Reactive-C protein, CP/uL 75.9(90.7) 108.8 (96.0) 89.7 (93.9) 0.0841
Hemoglobin, g/dL 13.0(2.2) 12.7 (2.3) 12.9 (2.2) 0.5821
Hematocrit, % 37.6(6.2) 37.2(7.2) 37.4(6.6) 0.7751
Leukocyte, per mcL 13,456.8 (6443.9) 9564.6 (5472.5) 11822.1 (6327.6) 0.0021
Platelets, per mcL 193,869 (80,822) 177,255 (73,991) 186,891 (78,078) 0.2961
Lymphocytes, % 15.5(9.3) 15.7 (9.2) 15.6 (9.2) 0.9221
Neutrophiles, % 78.4(10.3) 77.4(11.1) 78.0(10.6) 0.6661
Gasometry
pH 7.4(0.1) 7.4(0.1) 7.4(0.1) 0.0591
PCO,, mmHg 37.7 (8.5) 31.7 (6.5) 35.2(8.2) <0.001"
Bicarbonate, mEq/L 23.8(4.9) 21.9(4.5) 23.0(4.8) 0.0441
PaO,, mmHg 100.2 (43.6) 89.4 (38.6) 95.7 (41.7) 0.2031
Base excess, mEq/L -0.5(5.3) -1.5(5.1) -0.9(5.2) 0.3341
0, saturation, % 95.1 (5.0) 93.9 (6.0) 94.6 (5.4) 0.2891
Comorbidities, n (%)
Hypertension 55 (94.8%) 36 (85.7%) 91 (91.0%) 0.1162
Stroke 15 (25.9%) 7 (16.7%) 22 (22.0%) 0.2732
Coronary artery disease 14 (24.1%) 7 (16.7%) 21 (21.0%) 0.3652
Congestive heart failure 13 (22.4%) 3(7.1%) 16 (16.0%) 0.0402
Atrial fibrillation 13 (22.4%) 2 (4.8%) 15 (15.0%) 0.0152
Drugs, n (%)
Vasoactive drug 20 (34.5%) 22 (52.4%) 42 (42.0%) 0.0732
Sedation 17 (29.3%) 22 (52.4%) 39 (39.0%) 0.0202

Data shown as mean (SD) or absolute frequency (relative frequency %). 'Linear Model analysis of variance; ?2Pearson’s Chi-squared test. APACHE: acute
physiology and chronic health evaluation; PaO,: partial pressure of oxygen. Bold formatting represents grouped variables. Italic formatting represents
individual variables within a group.

Source: The authors.
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Experiment 1

Table 3 summarizes the results of Experiment 1, which
evaluates the performance of machine learning models
using only patient admission data. The table includes
the Area Under the ROC Curve (AUCQ), the Standard Error
(SE), and the 95% Confidence Interval (95% Cl) for each
classifier. None of the models achieved an AUC greater
than 0.9, indicating limited predictive performance using
admission data alone.

Cd
Experiment 2

Table 4 presents the results of Experiment 2, which
examines the performance of machine learning models
incorporating patient admission data and ventilation-related
features. The table highlights the AUC, SE, and 95% Cl for each
classifier. While there is a slightimprovement in the AUC from
0.88 to 0.89, no model surpasses the AUC threshold of 0.9,
suggesting incremental predictive enhancements with the
addition of ventilation-related features.

Table 3. Performance of machine learning models using only patient admission data.

Sensitivity (%)

Specificity (%) Area under the curve

85.7 83.9 0.88(0.05)
CatBoost
(70.7 - 100.7) (70.9 - 96.8) (0.78 - 0.98)
85.7 83.9 0.88(0.05)
Random Forest
(70.7 - 100.7) (70.9 - 96.8) (0.77 - 0.98)
85.7 80.6 0.86 (0.06)
Explainable Boosting Machine
(70.7 - 100.7) (66.7 - 94.6) (0.75-0.97)
81.0 77.4 0.83(0.06)
Logistic Regression
(64.2-97.7) (62.7-92.1) (0.71-0.95)
76.2 83.9 0.80(0.07)
Decision Tree
(58.0 - 94.4) (70.9 - 96.8) (0.67-0.93)

Performance metrics include sensitivity (true positive rate), specificity (true negative rate), and area under the receiver operating characteristic curve
(AUC). All metrics are presented with their respective 95% confidence intervals (Cl). Machine learning algorithms evaluated include: CatBoost
(Categorical Boosting), Random Forest, Logistic Regression, and Decision Tree.

Source: The authors.

Table 4. Performance of machine learning models using patient admission data plus the ventilation-related features.

Sensitivity (%) Specificity (%) Area under the curve
Random Forest 85.7 83.9 0.89 (0.05)
(70.7-100.7) (70.9 - 96.8) (0.79-0.99)
Explainable Boosting Machine 85.7 80.6 0.88 (0.05)
(70.7-100.7) (66.7 - 94.6) (0.78-0.98)
Logistic Regression 85.7 87.1 0.86 (0.06)
(70.7-100.7) (75.3-98.9) (0.75-0.97)
CatBoost 90.5 77.4 0.86 (0.06)
(77.9-103.0) (62.7-92.1) (0.75-0.97)
Decision Tree 76.2 83.9 0.85(0.06)
(58.0-94.4) (70.9 - 96.8) (0.73-0.96)

Performance metrics include sensitivity (true positive rate), specificity (true negative rate), and area under the receiver operating characteristic
curve (AUQ). All metrics are presented with their respective 95% confidence intervals (Cl). Machine learning algorithms evaluated include: CatBoost
(Categorical Boosting), Random Forest, Logistic Regression, and Decision Tree.

Source: The authors.
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Experiment 3

Table 5 shows the results of Experiment 3, which
evaluates machine learning models using patient
admission data combined with mobility-related features.
The inclusion of mobility-related features enables the (EBM
to achieve an AUC of 0.92, surpassing the 0.9 threshold.
The top six critical features identified are sedation, passive
kinesiotherapy, vasoactive drugs, sitting, IMS at admission,
and sitting (repeated due to interaction effects). EBM's
feature importance analysis reveals significant interactions
among features, such as SatO, *Sitting, Sedation*IMS
at Admission, PaO,*Sitting, Sedation*Age, and Passive
Kinesiotherapy*Active Kinesiotherapy*Vasoactive Drugs.

Experiment 4

Table 6 provides the results of IV and SS interpretations
for ventilation-related features. Features with IV > 0.1 are
considered to have medium predictive power. The most
predictive features include invasive mechanical ventilation,
mechanical ventilation in the prone position, and
non-invasive mechanical ventilation. While IV identifies

Cd

feature importance, WoE analysis reveals that performing
these procedures is associated with patient mortality.

Table 7 summarizes the IV and SS interpretations for
mobility-related features. Predictive features include sitting,
walking, active physiotherapy, passive kinesiotherapy, and
restricted mobility. WoE analysis indicates that sitting,
walking, and active kinesiotherapy are associated with ICU
discharge, whereas passive kinesiotherapy and restricted
mobility correlate with ICU mortality.

Table 8 displays the results of Experiment 4,
which evaluates machine learning models using
patient admission data enriched with mobility-related
features. The best model achieves an AUC of 0.92, with
critical features identified as passive kinesiotherapy,
sedation, invasive mechanical ventilation, vasoactive
drugs, sitting, and walking. EBM, an intrinsically
interpretable model, also provides superior accuracy
(AUC>0.9). EBM's global explanation highlights key feature
interactions, including PaO2*Sitting, Sitting*Admission
IMS, Hemoglobin*Sedation, COVID-19*Sitting, and
Leucocytes*Passive Kinesiotherapy.

Table 5. Performance of machine learning models using patient admission data plus the mobility-related features.

Sensitivity (%)

Specificity (%) Area under the curve

Random Forest 90.5
(77.9-103.0)

CatBoost 85.7
(70.7 -100.7)

Explainable Boosting Machine 90.5
(77.9-103.0)

Logistic Regression 81.0
(64.2-97.7)

Decision Tree 76.2
(58.0 - 94.4)

83.9 0.92 (0.04)
(70.9 - 96.8) (0.83-1.01)
87.1 0.92 (0.04)
(75.3-98.9) (0.83-1.00)
83.9 0.90 (0.05)
(70.9 - 96.8) (0.81-1.00)
87.1 0.90 (0.05)
(75.3-98.9) (0.80-0.99)
83.9 0.88 (0.05)
(70.9 - 96.8) (0.77 - 0.98)

Performance metrics include sensitivity (true positive rate), specificity (true negative rate), and area under the receiver operating characteristic
curve (AUC). All metrics are presented with their respective 95% confidence intervals (Cl). Machine learning algorithms evaluated include: CatBoost
(Categorical Boosting), Random Forest, Logistic Regression, and Decision Tree.

Source: The authors.

Table 6. Attribute relevance analysis ventilation-related treatment on Experiment 4.

Feature v p-value Effect size IV interpretation SSinterpretation
Invasive mechanical ventilation 5.191 1.18 e-34 0.87 very strong very strong
Mechanical ventilation in prone 0.607 8.59 e-07 0.34 very strong medium
Non-invasive ventilation 0.413 6.28e-05 0.28 strong medium
Spontaneous breath in prone 0.035 4.13e-01 0.06 weak useless
Oxygen therapy 0.004 1.00e-01 0.1 useless weak
Alveolar recruitment 0.002 1.00 0.00 useless useless

IV: Information Value; SS: Strength Score. Interpretations: very strong (IV > 0.5), strong (IV 0.3-0.5), medium (IV 0.1-0.3), weak (IV < 0.1).

Source: The authors.
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Table 7. Attribute relevance analysis of mobility-related treatment in Experiment 4.

Feature v p-value Effect size IV interpretation SS interpretation
Sitting 3.950 2.07e-26 0.75 very strong very strong
Walking 2.577 2.00e-16 0.58 very strong strong
Active kinesiotherapy 2.287 6.86e-21 0.66 very strong very strong
Passive kinesiotherapy 1.945 1.56e-32 0.84 very strong very strong
Restricted mobility 0.226 1.72e-09 0.42 medium strong

IV: Information Value; SS: Strength Score. Interpretations: very strong (IV > 0.5), strong (IV 0.3-0.5), medium (IV 0.1-0.3), weak (IV < 0.1).

Source: The authors.

Table 8. Performance of machine learning models using patient admission data plus the mobility-related features.

Sensitivity (%)

Specificity (%) Area under the curve

Random Forest 90.5
(77.9-103.0)

Explainable Boosting Machine 90.5
(77.9-103.0)

Logistic Regression 90.5
(77.9-103.0)

CatBoost 90.5
(77.9-103.0)

Decision Tree 76.2
(58.0 - 94.4)

83.9 0.92 (0.04)
(70.9 - 96.8) (0.83 - 1.00)
83.9 0.90 (0.05)
(70.9 - 96.8) (0.81 - 1.00)
87.1 0.90 (0.05)
(75.3-98.9) (0.81-1.00)
87.1 0.89 (0.05)
(75.3-98.9) (0.79 - 0.99)
83.9 0.82(0.06)
(70.9 - 96.8) (0.69 - 0.94)

Performance metrics include sensitivity (true positive rate), specificity (true negative rate), and area under the receiver operating characteristic
curve (AUC). All metrics are presented with their respective 95% confidence intervals (Cl). Machine learning algorithms evaluated include: CatBoost
(Categorical Boosting), Random Forest, Logistic Regression, and Decision Tree.

Source: The authors.

DISCUSSION

Our analysis revealed thatinpatient exposure to invasive
mechanical ventilation, prone positioning, and passive
kinesiotherapy were strong predictors of in-ICU mortality,
while active mobilizations such as kinesiotherapy, standing,
and walking were associated with ICU discharge. These
findings have important clinical implications, reinforcing
the role of early active mobilization to improve survival
outcomes among critically ill cardiovascular patients with
COVID-19. Furthermore, the integration of explainable
machine learning models enhanced the precision and
interpretability of these results, achieving high predictive
accuracy (AUC = 0.9) when mobility-related features were
included or when treatments were selected based on
attribute relevance analysis (Experiment 4). These findings
expand upon our previous study,'? providing deeper
insights into how functional and therapeutic factors impact
patient outcomes.

Building on these findings, Experiment 4 specifically
highlighted the Explainable Boosting Machine (EBM) model,
emphasizing the importance of passive kinesiotherapy,

Braz. J. Respir. Cardiovasc. Crit. Care Physiother., 2025; 16:e00072025

sedation, and sitting activities. Significant interactions
identified by the model included PaO2%*sitting, sedation*IMS
admission, hemoglobin*sedation, COVID-19%*sitting, and
leucocytes*passive kinesiotherapy. Although EBM did not
achieve the best overall result, its ability to assign importance
to individual features and their interactions makes it valuable
for further analysis. Similarly, Experiment 3 corroborated
these observations, as the EBM model emphasized the
significance of sedation, sitting, and passive kinesiotherapy,
further identifying key interaction effects among clinical
features. Additionally, it identified interactions such as
sedation*IMS admission, sitting*SatO2, sitting*Pa02, and
sedation*age, which warrant further investigation.

These findings are consistent with international
studies that have identified demographic and clinical risk
factors for hospitalization and mortality in patients with
cardiovascular diseases (CVD) and COVID-19. These risk
factors include older age, overweight, low lymphocyte
count, and pre-existing comorbidities®®272°, In Brazil,
the aging population helps explain the predominance
of non-communicable chronic diseases as the leading
causes of hospitalization and death in older individuals®.
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The overall length of stay in our sample was similar to thatin
other studies of patients with COVID-19, ranging from less
than one week to two months®'. Aretrospective study of 88
older adults hospitalized for COVID-19 in an ICU in Brazil
reported hypertension as the most common comorbidity,
with a median ICU stay of 23 days (range: 4-38)*. The
link between pre-existing CVDs, worse outcomes, and
increased risk of death in patients with COVID-19 is further
supported by our findings™. Together, these results support
the external validity of our findings, while highlighting
the significant role of demographic characteristics and
COVID-19 diagnosis in predicting in-ICU death in this
population.

Emerging clinical algorithms®** and consensus
guidelines® for the respiratory management of COVID-19
patients were developed. Our findings contribute to
these efforts by suggesting that inpatients with CvD and
COVID-19 were more likely to be exposed to ventilatory
support techniques, particularly alveolar recruitment
(concomitant with invasive ventilation) and awake
prone positioning. While the role of early mobilization in
COVID-19 patients is already acknowledged**=¢, algorithms
incorporating mobility interventions for this population
remain scarce. Although similar exposure to all mobility
interventions reinforces the general need for early
mobilization in hospitalized patients®’, the higher exposure
to passive kinesiotherapy in COVID-19 patients may serve
as a proxy for disease severity in this group.

In line with this, our results revealed that in-ICU
mortality was higher among patients who tested positive
for COVID-19, were exposed to invasive mechanical
ventilation, or had lower mobility scores at ICU admission.
These characteristics may serve as proxies for disease
severity. Interestingly, exposure to physiotherapy
interventions had two distinct effects on in-ICU mortality.
While restricted mobility and passive kinesiotherapy were
associated with in-ICU death, active mobilizations (such
as kinesiotherapy, standing, or walking) were linked to
in-ICU discharge. This finding is consistent with previous
studies showing improved mobility at hospital discharge
and a higher likelihood of returning home with increased
frequency and longer duration of physical therapy visits
for COVID-19 patients in acute care hospitals'". Given that
the interventions investigated here can be viewed as part
of a continuum of recovery—progressing from restricted
mobility to passive kinesiotherapy and eventually to active
kinesiotherapy—it can be argued that transitioning from
“passive to active kinesiotherapy” may be a critical factor
influencing clinical outcomes. Further studies are needed
to explore whether different sequences of physiotherapy
interventions are associated with in-ICU mortality and, if
so, to determine which specific sequence is most likely to
lead to in-ICU discharge.

Despite the strengths of the current study, limitations
should be acknowledged. Due to its retrospective design,
data regarding functional outcomes at admission were

Braz. J. Respir. Cardiovasc. Crit. Care Physiother., 2025; 16:e00072025
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missing for some participants. Additionally, physiotherapy
interventions were delivered based on the clinical decisions
of the rehabilitation team, which introduces variability.
The sample, derived from a single center during the
initial “wave” of COVID-19 cases in Brazil®3, may not be
representative of the broader Brazilian healthcare system,
warranting further investigation.

CONCLUSION

Functional outcomes at ICU admission and exposure
to routine physiotherapy interventions are significantly
associated with in-ICU mortality in older adults with
cardiovascular diseases. Machine learning enabled
the identification of key predictive features and their
interactions, achieving high predictive accuracy. Future
studies should further explore the application of machine
learning to validate and refine these findings across diverse
populations and settings.
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